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ABSTRACT
In this study, we examine the effect of various objective func-
tions used to optimize the recently proposed deep learning
architecture for singing voice separation MaD - Masker and
Denoiser. The parameters of the MaD architecture are opti-
mized using an objective function that contains a reconstruc-
tion criterion between predicted and true magnitude spectra of
the singing voice, and a regularization term. We examine var-
ious reconstruction criteria such as the generalized Kullback-
Leibler, mean squared error, and noise to mask ratio. We
also explore recently proposed, for optimizing MaD, regu-
larization terms such as sparsity and TwinNetwork regular-
ization. Results from both objective assessment and listening
tests suggest that the TwinNetwork regularization results in
improved singing voice separation quality.

Index Terms— music source separation, deep learning,
noise-to-mask ratio, perceptual evaluation

1. INTRODUCTION

Audio and music source separation aims at estimating indi-
vidual audio signals from an observed mixture. An important
task in music source separation is the estimation of singing
voice and background music [1], with a range of applications
spanning from music information retrieval [2] to music re-
purposing [3, 4]. To that aim, supervised approaches, and
specifically approaches based on deep learning, have shown
to provide state-of-the-art results [5, 6].

The most adopted solution for deep learning based mu-
sic source separation relies on the supervised training of deep
neural networks, and requires three components: i) the mix-
ture signal which is given as an input to the deep neural net-
work, ii) the target source signal, and iii) the objective func-
tion that will compare the estimated and the true target source
signals and, if applicable, introduce a penalty with respect
to the deep neural networks parameters and/or latent vari-
ables. The first two components are usually included in pub-
licly available datasets. For an overview of datasets in music

source separation interested readers are kindly referred to [1].
The choice or construction of an objective function comes ex-
perimentally by assessing objectively the source separation
performance of the deep learning model, using the signal-to-
distortion-ratio (SDR) and signal-to-interference-ratio (SIR)
metrics [7].

For instance, the work presented in [8] investigates the
effect of five objective functions that are commonly used in
matrix factorization based music source separation [9] and for
the task of multi-channel audio source separation. The results
suggest that the generalized Kullback-Leibler (KL) diver-
gence and the mean-squared-error (MSE) distance perform
equally well with respect to the SDR and SIR metrics. The
work presented in [10] proposes the modification of the bi-
nary cross-entropy cost function, commonly used to optimize
deep neural networks for classification tasks, so that percep-
tually relevant time-frequency masks can be approximated by
the deep neural networks for the task of speech separation.
Similarly, in [11] it is proposed to use a weighting scheme for
the cost function under the presence of various types of noise,
for the task of speech enhancement. The weighting scheme
employs an auditory-perceptual model in order to highlight
specific time-frequency regions that are of high importance
during training. An intelligibility objective was introduced
in [12] for the task of low-latency speech separation, which
has shown to outperform the MSE objective. Similarly, the
study presented in [13] proposes to use a combination of the
intelligibility objective employed in [12], and the SDR-SIR
objective metrics presented in [7]. The results from the lis-
tening tests conducted in [13] suggest that higher suppression
of interfering sources can be achieved by employing the SIR
metric into the optimization, while the combination of the
SDR and the intelligibility objective increases the quality of
source separation.

In contrast to the above mentioned signal processing ori-
ented objective functions, other approaches have been pro-
posed. For instance, the work in [14] examines the objective
functions that are used to train a deep clustering network in



speech separation. Specifically, it is shown in [14] that the
graph Laplacian distance and the whitened k-means objec-
tives introduce improvements to the deep clustering model,
in terms of SDR. The work presented in [15] proposes to use
the KL plus a sparsity penalty as the objective function for
the Masker and Denoiser (MaD) deep learning architecture
for singing voice separation. An improvement of that ap-
proach is presented in [16] where the TwinNetwork regular-
ization [17] is used to regularize the recurrent neural networks
of the MaD architecture yielding state-of-the-art (SOTA) re-
sults in monaural singing voice separation.

In this work we focus on the MaD architecture that for
monaural singing voice separation[15, 16], and examine
the perceptual effect that the previously mentioned objec-
tive functions have upon the separation quality of singing
voice. More specifically, we optimize the MaD architecture
using the KL objective with the TwinNetwork regulariza-
tion [16, 17] and the L1 sparsity regularization [15]. For
comparison we also optimize MaD without regularization,
using the MSE and a perceptually motivated objective based
on the noise to mask ratio (NMR) introduced in [18] and
used in the context of low-rank approximation for music
signals in [19]. Each cost objective is evaluated using the
SDR objective metric that has been initially proposed in [7]
and modified for the separation campaign presented in [5].
Furthermore, we subjectively assess the perceptual effect that
the objective functions have by means of listening tests using
experienced listeners through the usage of MUltiple Stimuli
with Hidden Reference and Anchor (MUSHRA) standard
using the framework presented in [20] and anchor synthesis
procedure from [21].

The remainder of this paper is structured as follows. Sec-
tion 2 presents the MaD architecture. Section 3 introduces
the objective functions used to train MaD. The experimental
setup is described in Section 4, followed by the results in Sec-
tion 5. Section 6 concludes this work.

2. MASKER AND DENOISER ARCHITECTURE

The MaD architecture operates in the time-frequency domain
and uses the magnitude spectrogram of a mixture signal |Y| ∈
RM×N
≥0 to predict the magnitude spectrogram of the singing

voice, |Ys|. The MaD architecture consists of two compo-
nents, the Masker and the Denoiser. The goal of the Masker
is to predict a time-frequency mask that when applied to |Y|,
it will produce a first estimate of the target source (i.e. the
singing voice), denoted as |Ŷs|. The Denoiser is responsible
for enhancing the result of the time-frequency masking opera-
tion performed by the Masker, resulting in a better estimate of
the singing voice magnitude spectra [16, 15]. An illustration
of MaD is given in Figure 1.

More specifically, the Masker uses a bi-directional recur-
rent neural network (RNN) encoder (RNNenc), that encodes
|Y| by iterating over the time dimension. The output of
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Fig. 1: Illustration of the MaD architecture.

RNNenc is updated by employing residual connections be-
tween the output of RNNenc and |Y|. The result is the latent
variables Henc that are then used as an input to a decoding
function that is implemented using a forward RNN decoder,
RNNdec. The output of RNNdec, Hdec, is then given to a spar-
sifying transformation. This transformation is implemented
using a feed-forward neural network FNNMand a rectified
linear unit (ReLU), resulting in computing a filter with non-
negative values for each time-frequency sub-band, Ms. Ms

is used to filter the mixture |Y|. Formally, the first estimate
of the singing voice spectrogram |Ŷs| is obtained using:

|Ŷs| = Ms � |Y|, where (1)

� is the Hadamard product and the superscript s denotes the
source specific indexing for the singing voice. For clarity we
will denote the overall function of the Masker for estimating
|Ŷs| asM(·), i.e.:

|Ŷs| =M(|Y|) (2)

|Ŷs| contains interference from the rest of existing mu-
sic sources in the original mixture, |Y| [15, 22]. MaD en-
compasses another trainable module after the Masker, aiming
at suppressing those interferences, and (therefore) called the
Denoiser. The Denoiser is a denoising autoencoder (DAE),
consisting of two feed-forward layers, the encoder FNNenc
and the decoder FNNdec. FNNenc and FNNdec are using ReLU
as an activation function and the input to the FNNenc is |Ŷs|.
The output of the FNNdec is used to multiply element-wise the
|Ŷs| by employing the skip-filtering connections, yielding the
final estimate of the singing voice magnitude spectrogram by
the MaD architecture, |Ŷ′s|. The function implemented by
the Denoiser is denoted as D(·), i.e.:

|Ŷ′s| = D(|Ŷs|). (3)



3. OBJECTIVE FUNCTIONS

The objective of the two functions (i.e. for the Masker and
Denoiser) respectively is defined as [22]:

Lobj = LM(M(|Y|), |Ys|)+LD(D(|Ŷs|), |Ys|)+λΩ(M).
(4)

With a small abuse of notation for brevity, Ω is a regulariza-
tion function that operates on the Masker and is scaled by λ
which is a factor that controls the strength of the regulariza-
tion. For the MSE between true X and predicted X̂ matrices,
the loss terms for the Masker and the Denoiser respectively in
Eq( 4) become:

LMSE(X, X̂) =
1

MN
||X− X̂||22, (5)

where || · ||22 is the squared Frobenious norm. Similarly for
the KL divergence between two matrices we have:

LKL(X, X̂) = ||X� log(
X + ε

X̂ + ε
)−X + X̂||, (6)

where log is the element-wise logarithmic function ,|| · || is
theL1 matrix norm, and ε is a small value to ensure numerical
stability. Finally, the NMR is defined for matrices that contain
magnitude spectral information as:

LNMR(X, X̂) = 10log10(
1

MN
||(X− X̂)�2 � T (X)||+ ε),

(7)
where log10 is the element-wise log base 10 operation, ·�2
denotes the element-wise exponentiation to the power of 2,
and T (X) is a pre-defined, non-trainable function that com-
putes the energy of the inverse masking threshold of the target
variable X. The computation of the inverse masking thresh-
old is based on the RASTA model [23], for computing the
Bark-scale frequency sub-bands necessary for computing the
masking threshold, and on the non-linear superposition ap-
proach presented in [24] with the exponential non-linearity
set to 0.9. We used the RASTA model because an approxi-
mation of the pseudo-inverse can be expressed for the Bark-
scaling operation. The pseudo-inverse is used to approximate
the masking-threshold at the original dimensionality of the
magnitude spectra, allowing the optimization to be performed
without further operators (e.g. dimensionality reduction) that
will bias the results with respect to the other described cost
functions. The non-linear superposition approach is used to
compute the masking threshold instead of other approaches,
because it provides a fast approximation of the tonal masking
without requiring the computation of the tonality of magni-
tude spectra [18, 24].

Focusing on the regularization term, we examine a very
common operator for inducing sparsity over the parameters of
the model and commonly used in music source separation for
avoiding over-fitting [8]. More specifically and as proposed

in [15, 22], we penalize the weights of WFNNM as:

ΩL1(M) := ||WFNNM ||. (8)

As the Masker relies mostly on recurrent neural networks,
we examine the TwinNetwork regularization that have been
proposed in the context of music source separation in [16] and
is the most recent and reasonably robust method for regulariz-
ing recurrent neural networks [17]. TwinNetwork regulariza-
tion uses the hidden states of a backward RNN to regularize
the hidden states of a forward RNN [17], while both of the
RNNs are trained to minimize the same cost, enforcing the
forward RNN to take into account the future evolution of the
signal. Let Henc be the output of the RNNenc that is served
both to the RNNdec, yielding Hdec, and to the TwinNetwork
that outputs Htwin, the regularization is defined as

Ωtwin(M) := Ltwin =
∑
t

||ψ(hdect)− htwint ||2, (9)

where ψ is a trainable affine transform that allows small per-
turbations to norm of errors, and h*t is the hidden state vector
of the corresponding RNN at the time-state t. All of the above
operations are used jointly to train the MaD architecture.

4. EXPERIMENTAL SETUP

To train the MaD architecture and cost functions, we use
the 100 two-channel multi-tracks from the MUSDB18 [25]
dataset that have been used in the SiSEC 2018 campaign [5].
The multi-track recordings are sampled at 44100 Hz. For each
multi-track we use the mixture and target source (singing
voice) in the dataset, and average the two available chan-
nels. The magnitude spectra are computed by using the STFT
analysis for each mixture and the corresponding singing voice
signal. The analysis uses a hamming windowing 46 ms long,
a factor of 2 for zero-padding, a hop-size of 8.7 ms. For the
NMR computation 24 Bark-bands are used. All the model
parameters are initialized and optimized according to the
proposed methodology presented in [15, 16]. To ensure a
fair comparison between the objective functions, the same
random seed is used to initialize the parameters of the MaD
in each training scheme with the corresponding objective
functions. The λ parameter for controlling the sparse reg-
ularization (Eq. 8) is equal to 1e − 4 and for the TwinNet
regularization (Eq. 9) equal to 0.5. The values were chosen
experimentally according to the balance between the range of
values for the reconstruction and regularization terms, follow-
ing [15, 16]. We assess source separation performance with
objective metrics SDR and SIR expressed in dB as proposed
in the 2018 SiSEC campaign [5] for the evaluation sub-set of
the corresponding dataset [25] comprising of 50 additional
multi-tracks.

A MUSHRA listening test as defined in [26] was con-
ducted to validate whether perceptual quality improvements



could be observed when using any of the objective functions
for separation. A total of 7 participants (after post-screening)
with previous experience in audio signal processing partici-
pated in the listening test. A selection of six 10-second seg-
ments from the evaluation sub-set of MUSDB18 data-set was
used as test content in the listening test. The test content was
chosen such that it includes (3) male and (3) female singers,
ensuring timbre and genre diversity. The anchor signals were
generated to resemble distortions produced by source sepa-
ration algorithms, following the procedure presented in [27].
The participants of the listening test were asked to rate gen-
eral separation quality as formally described in [21]. All
participants were asked to rate the test content in a continu-
ous quality scale from 0 to 100, divided into 5 equal intervals
with the following quality descriptors: [0-20] bad, [20-40]
poor, [40-60] fair, [60-80] good, and [80-100] excellent.

5. RESULTS & DISCUSSION

The results from the objective assessment using the SDR met-
ric are demonstrated in Fig. 2 with box-plots showing the me-
dian values of each objective function.
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Fig. 2: Boxplot showing the analysis of variance of the SDR
metric in dB for the TwinNetwork regularization (KLtwin),
mean-squared-error objective (MSE), sparsity regularization
(KLsp), and noise-to-mask ratio (NMR). Horizontal lines de-
note median values also displayed in bold-faced numbers.
The whiskers denote the minimum and maximum SDR val-
ues.

As can be observed in Fig.2 the TwinNetwork regulariza-
tion combined with KL (KLtwin), provides a marginal per-
formance increase of 0.06 dB and 0.14 dB with respect to
the MSE and the sparse-aware (KLsp) objective functions, re-
spectively. Additionally, the SDR ratings place the NMR as
the lowest-performing objective function, with KLsp showing
the largest interquartile range IQR, implying a larger degree
of variability in the results.

To facilitate a comparison of the results between SDR
and mean opinion scores (MOS) obtained with the listening
tests, barplots showing mean values with 95% confidence in-
tervals are also given in Fig. 3 and Fig. 4 for the MOS and

SDR, respectively. As can be seen in Fig. 3, the four ob-
jective functions obtained MOS values between 40 and 60,
suggesting fair separation quality according to the MUSHRA
specifications. In contrast to the marginal improvement seen
for KLTwin in the SDR results, MOS from the subjective lis-
tening tests show that this marginal difference in SDR val-
ues has an effect upon auditory quality perception. Specifi-
cally, the KLTwin received a MOS of 54.49, which is in av-
erage, approximately 6 points higher than MSE and KLsp. In
addition, KLTwin also outperformed the perceptually moti-
vated objective NMR by 4.3 points of MOS, while depicting
small variability in both MOS and SDR, according to Fig. 3
and Fig. 4, respectively. It should be noted that although the
NMR received the lowest objective median SDR of 3.79 dB,
it was rated as the second best objective function in the listen-
ing tests (see Fig. 3). Even when the number of participants
in the listening test is not sufficiently high to argue signifi-
cant differences between objective and subjective evaluation
scores, this difference follows similar observations presented
in [27], where listening tests at larger scale depict that sub-
jective performance not always coincides with the objective
metrics such as SDR.

Focusing on the computational costs during training, the
MSE objective involves only the computation a quadratic
loss, making it less computationally expensive compared to
Kullback-Leibler that involves the computation of the loga-
rithmic function, and element-wise matrix multiplications and
divisions. On the other hand, TwinNetwork regularization re-
quires additional training parameters which can significantly
increase the training time required for optimizing the MaD
architecture. However, the noise-to-mask ratio requires the
computation of the inverse masking threshold of the target
source magnitude spectra which not only significantly in-
creases the training time but also increases the necessary data
passed to the optimization.

From a simple optimization perspective, the additional
data obtained from the inverse masking threshold partake in
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Fig. 3: Mean opinion scores MOS obtained with the listening
tests. Mean values with 95% confidence intervals are shown
for the four objective functions.
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Fig. 4: Barplots showing mean SDR values with 95% confi-
dence intervals for the four objective functions.

training via the element-wise multiplication of the squared er-
rors, which are then passed to the 10-based logarithmic func-
tion (Eq.7). By applying the chain rule for computing the par-
tial derivatives with respect to the model parameters, it can be
observed that the curvature of the NMR function suffers from
plateaus close to local minima. A set of other minima (not
strictly global as the NMR function can have many roots),
that yield a low cost in the NRM sense, are at non-smooth
areas of that curvature making the NMR objective less use-
ful towards optimizing the corresponding parameters of MaD.
Based on the perceptual differences in the results, the Twin-
Network regularization appears to be able to provide a better
minima, resulting in a perceptually relevant increase of sepa-
ration performance.

6. CONCLUSIONS

In this study we examined from both objective and subjective
stand points, the performance of objective functions used
to train the MaD architecture for singing voice separation.
Although this study presented a small-scale listening test,
the mean opinion scores obtained exhibit noticeable trends
between the objective functions and the performed evaluation
strategies. More specifically, the TwinNet regularization pre-
sented in [17] and proposed in [16] for optimization of the
MaD architecture can lead to improvements to both signal-
to-distortion ratio metric and perceptual improvements in
separation quality of singing voice. Perceptually, the mean-
squared-error and Kullaback-Leibler with the L1 sparsity
term have approximately equal performance.

The perceptually motivated objective function based on
the noise-to-mask ratio was outperformed by the TwinNet-
work regularization that encompasses the Kullback-Leibler
reconstruction term. From the above, it is highlighted that
techniques or evaluation schemes that are well established in
signal processing do not necessarily provide improvements
to deep learning approaches trained by stochastic gradient
descent. This suggests that devising new objective functions

should take into account the dynamics of stochastic gradient
descent, the corresponding parameterized functions’ gradi-
ents, and the perceptual impact of the metric on perceptual
quality. Finally, the results presented in this study show trends
for the studied deep learning architecture, but might differ for
other architectures or approaches, depending on the artifacts
and the interference that these approaches produce. In the
spirit of reproducible research the source code and the listen-
ing tests corpora is available through: https://github.
com/Js-Mim/mss_pytorch/tree/nmr_eval and
https://github.com/dr-costas/mad-twinnet.
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