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ABSTRACT

This paper studies the detection of birds call in audio seg-
ments using stacked convolutional and recurrent neural net-
works. Data augmentation by blocks mixing and domain
adaptation using a novel method of test mixing are pro-
posed and evaluated in regard to making the method robust
to unseen data. The contributions of two kinds of acoustic
features (dominant frequency and log mel-band energy) and
their combinations are studied in the context of bird audio
detection. Our best achieved AUC measure on five cross-
validations of the development data is 95.5% and 88.1% on
the unseen evaluation data.

Index Terms— Bird audio detection, convolutional recur-
rent neural network, data augmentation, domain adaptation

1. INTRODUCTION

Bird audio detection (BAD) refers to identifying the presence
or absence of bird call/tweet in a given audio recording. This
task acts as a preliminary step in the automatic monitoring of
biodiversity [1, 2]. After identifying the presence of bird call
activity, a species-based classifier can recognize the bird call
more accurately [3, 4]. In this regard, the bird audio detec-
tion challenge [5] was organized with an objective to create
algorithms that are robust and scalable to work on real life
bio-acoustics monitoring projects without any manual inter-
vention. The challenge provided annotated and non-annotated
bird call recordings. The former is utilized as the training
dataset and the latter are recordings from a completely dif-
ferent geographical location and employed as the test dataset.
This geographical mismatch imposes a further difficulty to the
problem since any proposed method should be context inde-
pendent.

The bio-diversity changes widely across geographical lo-
cations. For example, bird species in one location are not
the same in the other. Different locations also mean different
acoustic environments leading to a variety of sound sources
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specific to the respective soundscapes. Furthermore, each of
these bird species has unique calls, resulting in a wide variety
of bird calls. Labeling such a wide variety of calls into one
class weakens the classifier and can result in misclassification
of similar sounding non-bird sounds. The problem is further
intensified in the dataset used because each of the bird calls
has been recorded with different devices that add their own
system noise. A bird audio detection method which can work
across such wide range of species and environments is termed
as a generic method.

To our knowledge, there has not been any publication spe-
cific to detection of bird calls in audio. Bird audio detection
has been used as a submodule in the bird species classification
task [3, 4]. In the context of manual annotation of audio for
very large biodiversity surveys [2], using a binary bird audio
detector helps filter a number of negative instances, thereby
improving the efficiency.

In this paper, we propose the employment of methods of
the sound event detection (SED) and their adaptation to the
specific problem of detecting bird calls, approaching the BAD
as a SED problem. In the case of general SED, the state of
the art results have been reported in [6] using convolutional
recurrent neural networks (CRNNs). The CRNN architecture
exploits the combined modeling capacities of a convolutional
neural network (CNN), a recurrent neural network (RNN),
and a fully connected (FC) layer. CRNN architectures have
also been proposed in automatic speech recognition [7] and
music classification [8]. In [9], these CRNN’s were extended
to accommodate multiple feature classes and the feature maps
from CNN’s were processed using a bidirectional RNN. This
architecture was called the convolutional bidirectional recur-
rent neural network (CBRNN). We use this CBRNN for iden-
tifying the presence of bird call in the audio.

In particular, for the BAD task, we propose to use the
CBRNN and train it with regularization methods like dropout
and early stopping to reduce the over-fitting to training data.
This makes it generic and performs equally well on unseen
data from different recording conditions. Data augmenta-
tion method of blocks mixing and a novel domain adaptation
method of test mixing are proposed and analyzed with respect
to making the classifier robust to new data. Two features (log
mel-band energy and dominant frequency) and their combi-
nation are analyzed in the context of the BAD task.



The rest of the paper is organized as follows. The pro-
posed method involving the extraction of acoustic features
representing the harmonic and non-harmonic content of the
audio are presented in Section 2.1. The state of the art net-
work for SED task and its configuration for the BAD is ex-
plained and presented in Section 2.2. Data augmentation and
domain adaptation techniques are studied for generalizing the
BAD methods in Section 2.3. The evaluation and results are
reported and discussed in section 3.

2. METHOD

The input to the proposed method is an audio signal of length
10 seconds. Acoustic features, namely log mel-band energy
and dominant frequency, are extracted from this audio in
frames of 40 ms. This amounts to 500 frames in total for 10
seconds audio. The stacked neural network reads in the 500
frames of features and maps them to the presence or absence
of a bird call. This stacked neural network is built by stacking
layers of CNN, RNN and FC followed by a single node out-
put layer producing outputs in the range of [0, 1]. The output
zero marks the presence and one marks the absence of the
bird call. The details of the feature extraction and the stacked
neural network are described below.

2.1. Feature extraction
In this paper, we experiment with two kinds of features and
analyze their contributions. Just like human speech and
singing, bird calls can have harmonic, non-harmonic, broad-
band, and noisy structure [10]. We propose to model the
overall content of the audio using the log mel-band energy
feature (mbe). mbe has also been shown to be effective in the
general SED tasks [6].

The harmonic content in an audio is proposed to be mod-
eled using three dominant frequencies and their respective
magnitudes (dom-freq) in each frame. dom-freq has been
used as a perceptual feature in SED tasks [9] and has provided
considerable improvement when used along with mbe.

Both the features were extracted from frames of 40 ms
length with 50% overlap using a Hamming window. The
three dom-freq’s were extracted in the range of 500-8000
Hz. By choosing a minimum frequency of 500 Hz, we get rid
of most environmental ambience and human speech related
fundamental frequecies. The extraction was done on thresh-
olded parabolically-interpolated STFT [11] using the librosa
implementation [12]. The log mel-band energy was calcu-
lated for 40 mel-bands in 0-22050 Hz range.

2.2. Proposed neural network
Each of the feature classes, mbe and dom-freq, is handled
separately in the first layer of the CBRNN. T = 500 frames of
40 mbe from mono channel audio are stacked into a volume
of T × 40 × 1. While the three frequencies and their ampli-
tudes of dom-freq are layered into a volume of T × 3 × 2.
Separate CNN’s are employed to learn local shift-invariant
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Fig. 1. Stacked convolutional and bi-directional recurrent
neural networks (CBRNN) architecture for bird audio detec-
tion using multiple feature classes

features from each of these volumes as shown in Figure 1. A
max pooling operation is performed after every CNN layer
in time and frequency axes reducing the final dimension of
both the feature classes to 5 × 1 × N , where N is the num-
ber of filters in the last CNN layer. We use a receptive field
of 3 × 3 for all CNN’s. The feature maps from CNN are
merged using an elementwise multiplication operation and
fed to bi-directional gated recurrent unit (GRU) layers fol-
lowed by fully-connected time distributed dense layers. The
output layer consists of a maxout dense layer [13] with sig-
moid activation function.

Batch normalization [14] was employed for all the CNN
layers. The CBRNN was trained for a maximum of 500
epochs, using Adam optimizer (with the parameters proposed
in the original paper) [15], and mean squared error objective.
In order to reduce overfitting of the model, early stopping
was used to stop training if the area under curve (AUC) mea-
sured (Section 3.1) on the validation data did not improve for
50 epochs. Dropout [16] was employed as a regularizer to
make the model generic and avoid overfitting to the training
data. The neural network architecture was implemented using
Keras [17].

2.3. Data augmentation and domain adaptation
In order to increase the generalization and robustness of our
classifier, we perform data augmentation using the blocks
mixing implementation of [18]. The features of every train-
ing file are mixed with the features of another random training
file. The mixing of dom-freq of two files is done by concate-
nation, this extends the feature dimension to T ×6×2. In the
case of mbe, the maximum value for each time and frequency
bin is used, thereby keeping the input dimension unchanged.
The network is trained with the augmented data along with
the original features. This doubles the training data size. The
label for the augmented data is set to be absent only if the bird



Dataset Bird call
present absent

freefield1010 5755 1935
warblr 1955 6045
Total 7710 7980

Table 1. Statistics of bird audio detection challenge [5] de-
velopment set

call is absent in both the random files, otherwise the label is
set to present.

In the BAD challenge, since the evaluation data is from
an entirely different location, the performance of the classifier
on it may be poor. In order to teach the classifier what it can
expect, we propose a novel approach for domain adaptation
called test mixing. We perform this by exposing the network
to test data by selectively mixing it with training data. Since
we do not have the labels of test data, we cannot mix every
training recording with a random test recording. Hence, we
perform the mixing only on training recordings where bird
call is present (positive label). This way no matter what con-
tent the test recording has, the training label will remain pos-
itive after mixing. Ideally, we can mix every training record-
ing with each of the test recordings, but we limit ourselves to
mixing each training recording with just one test recording.
Thereby we double the amount of training data for the posi-
tive class. In future, a similar augmentation method will have
to be devised for the negative cases, so that the classifier is
equally exposed to test data ambiance for both the classes.

We submitted another method [19] which came second in
the BAD challenge. The proposed method differs from [19] in
terms of using a harmonic specific feature (dom-freq), a net-
work supporting multiple feature classes, max pooling opera-
tion in time axis and processing the feature map from CNNs
using bi-directional GRU. Additionally, we also propose us-
ing data augmentation and domain adaptation to generalize
our method.

3. EVALUATION
3.1. Datasets and metrics
The bird audio detection challenge [5] provided a develop-
ment and an evaluation set. These data came from three sepa-
rate datasets: i) field (freefield1010), ii) crowd-sourced (war-
blr), and iii) remote monitored (chernobyl). The development
set comprised of freefield1010 and warblr only. The evalua-
tion (challenge) set comprised of data unseen in development,
predominantly coming from the chernobyl dataset.

Recordings in both the sets were 10 seconds long, single
channel, and sampled at 44.1 kHz. The labels for the develop-
ment set were binary, i.e. bird call(s) present or absent. The
development set consisted of 15690 recordings in total and
was distributed as presented in Table 1. The evaluation set
consisted of 8620 audio recordings.

From the development set, we randomly generated five
cross-validation (CV) splits of 60% training, 20% validation,

and 20% testing such that each split had equal distribution of
classes. All development set results in future are the average
performance on this five-fold CV split.

For the challenge submission, the CBRNN is trained on
three CV splits of 80% training and 20% validation of devel-
opment set, with equal distribution of classes in each split.
For each of the CV splits, the trained CBRNN is evaluated
on the unseen test set, and the average of the three outputs is
submitted as the final result.

The output of the BAD method is evaluated from the re-
ceiver operating characteristic curve (ROC) using the AUC
measurement [20].

3.2. Evaluation procedure
For the estimation of the hyper-parameters of the CBRNN,
we experimented with one to four layers each of CNN,
RNN, and FC. The number of units for each of these lay-
ers were varied in the set of {4, 8, 16, 32, 64, 128}. The same
dropout rate was used for all layers and varied in the set of
{0.25, 0.50, 0.75}. The parameters were decided based on
the best AUC score on five CVs of the development set, using
the mbe and dom-freq features. The best configuration with
least number of weights had two layers of CNN’s with eight
filters each, one RNN layer with eight units and an FC with
eight units. Figure 1 shows the configuration and the feature
map dimensions of the neural network. This configuration
had only 2,600 weights. In terms of AUC score, configura-
tions of CBRNN having up to 500,000 weights did not show
any significant improvement over using 2,600 weights.

The best CBRNN configuration was seen to generalize
well with a dropout of 0.75 and was seen to overfit for 0.25
and 0.50. The overfitting was observed from the training and
validation AUC score plot with respect to training epochs. On
employing early stopping, we control this overfitting at dif-
ferent drop out rates and achieve a comparable AUC on the
development set.

Similar hyper-parameter experiments were done for the
mbe and dom-freq features individually, and the same
CBRNN configuration was seen to be one of the top per-
formers on the development set with over 95% AUC for mbe
and around 87% for dom-freq. This considerable difference
can be accounted for the fact that mbe can represent both
harmonic and non-harmonic structure of a bird call, whereas
dom-freq in itself cannot completely justify for the non-
harmonic structure. Thus we only report and analyze the
results of mbe individually and along with dom-freq in the
rest of the paper.

Initially, a study was carried out to extract features in
smaller frequency bands motivated from the fact that the
fundamental frequency of bird calls are in the range of 3-5
kHz [21]. The mbe and dom-freq features were extracted
in the extended band of 3-8 kHz to accommodate the higher
order harmonics along with the fundamental frequency. The
CBRNN with the band-limited features achieved a best AUC



No data augmentation Blocks mixing Test mixing

Feature Dropout
Validation

Score
Test

Score
Validation

Score
Test

Score
Validation

Score
Test

Score

mbe + dom-freq
0.25 95.1 85.0 94.9 83.2 94.6 86.5
0.5 94.7 85.6 95.5 83.4 94.6 87.4

0.75 94.8 83.7 95.2 85.3 94.7 86.2

mbe
0.25 95.2 87.2 95.0 84.8 94.8 88.1
0.5 95.3 85.1 95.2 86.5 94.9 87.6

0.75 95.3 87.0 95.4 86.1 94.7 87.8

Table 2. Area under curve scores for validation split of development dataset and unseen test data. The best test scores for each
feature and dropout combination is highlighted.

score of 89% on the development set. Particularly, the num-
ber of false positives (FP) had increased, i.e. a number of
recordings were wrongly flagged to have a bird call. This
shows that in comparison to using band-limited features,
the network is learning useful information of bird call being
absent from the full band features.

4. RESULTS AND DISCUSSION

The average validation scores for the challenge submission set
and their corresponding unseen test data scores for different
dropout rates are presented in Table 2. For the results with-
out data augmentation, we see that across the feature classes
and the dropout rates, the validation scores are comparable
(≈ 95 %). The test scores are seen to vary about 4% across
the features (highest of 88.2 % and lowest of 84.2 %).

To obtain a general insight on the significance of this 4%
we went through the results of the validation data. We thresh-
olded the posterior probability of final maxout layer using a
value of 0.5, i.e. a posterior probability higher than 0.5 signi-
fied that a bird call was present and otherwise absent. Among
the 3138 validation recordings, there were 377 recordings
classified wrongly. 242 of these were FP according to the
ground truth. Since listening to all the wrongly classified
recordings was not practical, we chose about the same ratio
of recordings randomly for our listening test i.e. 70 FP and
30 false negatives (FN) recordings. By manually examining
the audio files (i.e. we listened to the 70 recordings), we
found that 37 of the 70 FP recordings had noticeable bird
audio activity. Similarly, 7 of the 30 FN recordings had no
bird activity. In total 42 of 100 (70 FP + 30 FN) recordings
tested had wrong labels. Errors are obvious in any kind of
manual annotation, and the classification method has to be
robust to these. In the present scenario, the author is not sure
how to correlate the annotation errors finding with algorithm
performance comparison, and hence just presents it as an
observation.

The results of the data augmentation and domain adapta-
tion are presented in Table 2. The general observation is that
the proposed domain adaptation (test mixing) gives consis-
tently better performance than the data augmentation method
(blocks mixing). Another observation on how different the
test data is with respect to training data can be noticed from

the validation scores of test mixing. We see that they are
consistently smaller than the validation scores without do-
main adaptation. In addition to these, the combination of both
blocks and test mixing together was tried and was seen to per-
form poorly in comparison to no data augmentation on test
data. It achieved an AUC of 80.3% with 0.5 dropout.

4.1. BAD challenge results
The proposed method fared in the top performing submis-
sions of the BAD challenge [22]. Apart from our method,
there were five other submissions [23, 24, 25, 26, 19] which
stood out from the rest of the submissions and achieved an
AUC score in the 88.0-88.7% range. All these submissions
used CNN’s as part of their classifier, spectrogram features,
and an ensemble of networks for the final submission. Four
of them used time and frequency shifting for data augmen-
tation [23, 24, 25, 26]. Three of them performed a prepro-
cessing step of noise reduction on the input data [23, 25, 26].
Two of them [23, 26] mixed test data classified with high
confidence to the training data for domain adaptation. The
smallest network configuration among these [26] had approx-
imately 328,000 parameters, in comparison to this our pro-
posed method had 120 times fewer parameters.

Our proposed data augmentation and domain adaptation
methods were unique among the submissions. In terms of
data augmentation, our proposal of blocks mixing did not give
any advantage over not using it. While the domain adaptation
method of test mixing was seen to be helpful. Finally, with
respect to features, ours was the only submission which ex-
perimented with a harmonic specific feature (dom-freq).

5. CONCLUSION

A stacked convolutional and bidirectional recurrent neural
network architecture (CBRNN) was proposed for bird audio
detection task. Two kinds of features and their combination
was studied and the best result on test data was achieved
using the log mel-band energy feature. The proposed novel
domain adaptation was shown to consistently perform better
than having no adaptation. The data augmentation method
studied was not helpful and gave comparable results as with-
out augmentation. The proposed method achieved an area
under curve measure of 88.1% on the unseen evaluation data,
and 95.5% on the development data.
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