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Abstract

This paper addresses the problem of single-channel speech sep-
aration, where the number of speakers is unknown, and each
speaker may speak multiple utterances. We propose a speech
separation model that simultaneously performs separation, dy-
namically estimates the number of speakers, and detects in-
dividual speaker activities by integrating an attractor module.
The proposed system outperforms existing methods by intro-
ducing an attractor-based architecture that effectively combines
local and global temporal modeling for multi-utterance scenar-
ios. To evaluate the method in reverberant and noisy condi-
tions, a multi-speaker multi-utterance dataset was synthesized
by combining Librispeech speech signals with WHAM! noise
signals. The results demonstrate that the proposed system accu-
rately estimates the number of sources. The system effectively
detects source activities and separates the corresponding utter-
ances into correct outputs in both known and unknown source
count scenarios.

Index Terms: speech separation, speaker counting, speaker di-
arization, attractors, transformers

1. Introduction

Speech separation aims to isolate individual speech signals from
mixtures containing multiple speakers. This task is particularly
challenging in real-world environments due to noise, reverber-
ation, and the highly time-varying nature of source activities,
especially in single-channel scenarios [1, 2, 3, 4].

Most existing research assumes a known and fixed number
of speakers with each contributing a single utterance [5, 6, 7, 8,
9, 10, 11, 12]. However, this assumption does not match with
real-world scenarios, where the number of speakers is often un-
known and varies over time, with each speaker potentially con-
tributing multiple utterances that may overlap in variable ways.
To handle unknown source numbers, one direct approach is re-
cursive separation [13, 14]. In contrast, deep clustering meth-
ods [15, 16] create high-dimensional embeddings for each time-
frequency bin, which are then clustered to group together the
embeddings corresponding to the same speaker, thereby avoid-
ing the dependency on the prior number of speakers. A similar
approach is applied in speaker clustering [17]. Deep attractor
networks [18, 19] try to create a representation vector for each
sound source in feature space as a reference point. Following
the success of attractor networks, systems that combine attrac-
tors and separators have gradually emerged as the mainstream
solution. RNN-based attractors were explored in joint speaker
diarization and speech separation systems [20, 21]. More re-
cently, a transformer attractor was proposed in [22], which
demonstrated excellent performance.
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Figure 1: The illustration of the A-DCSS in multi-speaker with
multi-utterance scenarios.

The aforementioned studies focus only on single-utterance
scenarios. For situations with an unknown number of speak-
ers and multiple utterances, several methods have shown poten-
tial effectiveness, including recurrent attention networks [23],
spatial filtering [24], and dual-path model consisting of LSTM
and transformers [25]. However, most of these approaches have
concentrated on speaker counting and long-sequence modeling,
overlooking source activity detection. Moreover, they primarily
target speech recognition, with limited evaluations of separation
performance and the impact of noise and reverberation.

Our work aims to address the novel problem of separating
an unknown number of speakers, each with multiple utterances,
a scenario that has not been evaluated in previous research, as
shown in Fig. 1. Related research exists in continuous speech
separation (CSS) [26, 27], which focuses on producing output
streams where speech signals do not overlap, typically assum-
ing a known number of sources. In contrast, our work empha-
sizes separation of unknown number of speakers while ensuring
all utterances from the same speaker are consistently assigned to
a single output channel, rather than merely de-overlapping the
signals. We propose an attractor-based joint diarization, count-
ing, and separation system (A-DCSS) that leverages multi-task
learning to simultaneously minimize errors across these tasks.
Our system makes four major contributions: (1) We are the first
to test an attractor design for multi-utterance separation, vali-
dating its effectiveness in source modeling and potential source
identification. (2) We integrate RNN attractors with feature-
wise linear modulation (FiLM) [28] and develop an improved
multi-path module with transformer-LSTM blocks [10]. (3) Our
ablation studies demonstrate that source activity detection sig-
nificantly improves separation performance. (4) We retrain and
evaluate existing methods [13, 20, 21, 22] on the synthesized
dataset, demonstrating their adaptability to multi-utterance sce-
narios. Our experimental results show that A-DCSS outper-
forms baseline systems in both fixed and varying speaker sce-
narios under anechoic, noisy, and reverberant conditions.

2. Signal Model

The observed signal y of length 7™ can be represented as

c
y = Zxc—i—n. (€))]
c=1
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Figure 2: A-DCSS architecture.

Here, the observed signal y consists of speech signals x. from
C sources and noise n. The signal x. from the c-th speaker,
consists of multiple utterances and potential pauses between
them. The speaker counting task involves estimating the num-
ber of speakers C'. We assume that by extracting features from
the time-domain signals, we can predict binary speaker activi-
ties P of size C x T, where T denotes the number of time seg-
ments in which the activity is predicted. In realistic scenarios
the number of speakers C' is unknown, and the speech signal x.
consists of multiple utterances. Our objective is to estimate x.
by separating all utterances belonging to the same speaker into
a single output. This process leverages the estimated speaker
count €' and speaker activity P, resulting in C separated speech
signals, as illustrated in Fig. 1.

3. Attractor-based joint diarization,
counting, and separation system (A-DCSS)

The proposed joint separation system consists of three core pro-
cesses: feature embedding, attractor generation, and speech
separation. The system architecture is illustrated in Fig. 2. An
encoder and a decoder are used to transform the signal between
the time domain and the time-feature domain. The embedding
module maps the time-feature representations into a latent em-
bedding space through a dual-path transformer-based network.
The attractors are generated by learning source-level informa-
tion from the embeddings. As shown in Fig. 2, the speaker
diarization results and the prediction of the attractor existence
probability can be obtained by the attractors, respectively. Then,
the generated attractors are used as conditioning input, modulat-
ing the mixture features into speaker-specific features through a
FiLM operation. Finally, we employ a triple-path separator to
achieve speech separation.

Encoder and decoder: The encoder applies a one-dimensional
convolutional layer with rectified linear unit (ReLU) activation
to transform the input y € R”" into a time-feature represen-
tation Y € RT*F F being the feature dimension. The kernel
size is L samples and the stride is L/2 samples. The decoder
reconstructs each separated signal using a transposed convolu-
tional layer with the same hyperparameters as the encoder.
Feature Embedding: The feature embedding module of A-
DCSS uses a dual-path design, as shown in Fig. 3. A linear
layer is used to map the encoded features from dimension F' to
D. Following the Sepformer [9], we employ a chunking opera-
tion that segments the time dimension 7" into .S chunks of equal
length K, with a hop size of K/2, resulting in the input tensor
Di, € REXSXD  This dual-path structure allows the mod-
ule to model both local dependencies within chunks through
intra-chunk processing (S x K x D) and global dependencies
across chunks through inter-chunk processing (K x S x D).
In Fig. 3, P/R represents the permute/reshape operations. The
intra-chunk and inter-chunk blocks follow the design in [9],
consisting of a multi-head attention layer followed by a feed-
forward layer, with layer normalization before each layer.
Attractor module: The attractor module aims to learn source-
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Figure 3: Dual-path (dashed line) and triple-path modules.
Dy and T, are their outputs with inputs D, and T, respec-
tively. P and R represent the permute and reshape operations.

level representations that characterize individual speakers in the
mixture. Unlike the attractors in [18, 19] obtained through ideal
mask and k-means clustering, our approach adopts a BLSTM-
based encoder-decoder architecture for attractor generation as
shown in Fig. 4, following [29]. The output Dy, € R¥*5*P
from the dual-path module is processed by an overlap-add op-
eration, reconstructing it into a sequence {dt}z;l c RT*P,
The LSTM-encoder encodes the obtained sequence to generate
hidden state h € R” and cell states ¢ € R, which are subse-
quently used by the LSTM-decoder to generate J 4 1 attractors
{a, f:ll, where a; € R**P . During the decoding step, a se-
quence of D-dimensional zero vectors {hg} € RUZFD*D jg
used as input. The first .J attractors {a;};—; € R7*" repre-
sent the identified J sources, while the final attractor ay41 is
responsible for determining the non-existence of the speaker.
As shown in Fig. 2, the attractor module produces three out-
puts: (1) The generated attractors {a; ;’Ll € RUFDXD are
passed through a linear layer with a sigmoid activation func-
tion to get the prediction of the attractor existence probability
q € R7T!. Binary prediction values are obtained by com-
paring each element of g with the predefined threshold Texis:.
The estimated number of speakers c corresponds to the num-
ber of existing attractors; (2) The inner product between the
first J attractors {a;}/—; € R’*" and the input embeddings
{d;}{-, € RT*P are passed through a linear layer with a sig-
moid activation function to predict the probability of activity of
each source at each time step, which is represented using matrix
P ¢ R’*T. This process follows the attractor-based diariza-
tion method in [29]. Binary activity predictions are obtained
by comparing each element of P with the predefined threshold
Taiars (3) The generated first J attractors {a; }jzl € R7*P are
fused using FiLM conditioning [28] with the dual-path mod-
ule output Doy, € REXSXP to get the input of separator
Tjy € R7*E*SXD During training, J is set to the true number
of speakers C'. During inference, we define a maximum possi-
ble number of sources Jmax and generate Jnax + 1 attractors.
Then, an estimate ' is obtained based on the predicted proba-
bility of attractor existence, and the first C attractors are passed
to the speaker diarization and separation branches.

Triple-path Separator: The triple-path module extends the
dual-path module by incorporating an additional inter-speaker
block, following the design in [22], as shown in Fig. 3. Af-
ter FILM modulation, the feature tensor T;, € R7*K*SxD
incorporates an additional dimension J corresponding to the
first J attractors. The inter-speaker block processes informa-
tion along the J dimension, treating the K and S as a batch
dimension. Each block of the triple-path module employs an
enhanced transformer-LSTM block instead of the simple trans-
former block used in the dual-path module. This enhanced
block, which has demonstrated superior performance for long
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Figure 4: Attractor module.

speech sequence modeling [10], comprises a multi-head atten-
tion layer, an LSTM layer, and a linear layer. Furthermore,
the three-path module is stacked Nuipie times, which enhances
the capacity to capture complex patterns. The output of the
triple-path module Toy € R7*X*5*D g first processed by
overlap-add to obtain T'o € R7*T*P_ Then, a linear output
layer transforms the feature dimension from D to F', and the
J separated time-domain signals are obtained after decoding.
Loss Function: A-DCSS is trained using a joint loss function,
Lioint = AsLs-sDR + AdLaiar + Ae Lexist- As, Ad, and Ag denote the
weights assigned to each loss item. Here, Lsi.spr is the SI-SDR
loss that measures the reconstruction error between the sepa-
rated signal x and reference signal x. Lgi,r represents the binary
prediction loss for speaker activity. The permutation invariant
training (PIT) method [7, 8] is used to calculate the diarization

loss as
Liiar = HPlIlTHZ BCE(p¢, Pt), 2)
t

where p; is a vector of reference labels at time ¢. BCE(-, -) is
the binary cross entropy loss. Leis is the attractor existence
loss, Lexist = BCE(q, ), where q = [1,--- ,1,0] € RE+!,

4. Experimental settings
4.1. Datasets

In our research scenario, multiple speakers coexist in a mixed
signal, each contributing multiple utterances. To synthesize
data consistent with this scenario, we use speech from the Lib-
riSpeech corpus [30], which provides the diarization labels for
model training and evaluation. Noise signals are from the
WHAM! dataset [31]. We consider four scenarios: (a) ane-
choic, (b) noisy, (c) reverberant, and (d) noisy and reverber-
ant mixtures. Each scenario involves mixtures containing either
two or three speakers, with a random number of utterances per
speaker, resulting in eight dataset configurations. Each config-
uration comprises a training set, a validation set, and a test set,
with 20,000, 2,000, and 2,000 mixtures, respectively.

When synthesizing each anechoic mixture, we randomly
select C' speakers from LibriSpeech. For each selected speaker,
we randomly extract between 1 and 5 speech utterances, where
the number of utterances follows a uniform distribution. We
use the original Librispeech signal levels without scaling, where
the relative level between any two speech signals varies within
[0,5] dB. A random silence interval is inserted in the begin-
ning and between each utterance which duration is drawn uni-
formly from [0, 3] seconds. Concatenating all speech utterances
and silences for each speaker yields their complete speech sig-
nal x.. The anechoic multi-speaker, multi-utterance mixture is
then obtained by superimposing these signals. This synthesis
approach results in an average overlap ratio of 22.5% in our
2-speaker dataset, which aligns with natural conversational sce-
narios. To incorporate noise, we randomly extract a segment of
equal length from the WHAM! noise dataset and adjust its am-
plitude according to a randomly generated signal-to-noise ratio
(SNR) between 0 and 10 dB. In the SNR calculation, the signal
level is calculated as the average power of all speakers in the

1455

Table 1: ASI-SDR (dB)(1) on the 2-speaker dataset.

Models ‘ Anechoic Noisy Reverb Noisy & Reverb
Conv-TasNet [5] 6.1 6.0 3.5 4.0
Sepformer [9] 8.1 7.4 7.1 6.8
Recursive-SS [13] 7.1 6.4 4.5 3.5
EEND-SS [20] 7.7 72 5.7 5.5
SepEDA [21] 10.1 8.4 7.5 7.6
SepTDA [22] 8.5 7.7 6.9 6.8
A-DCSS \ 11.2 9.7 8.9 8.7

logarithmic scale. This noise is then added to the anechoic mix-
ture to produce a noisy multi-speaker, multi-utterance mixture.
To simulate reverberant mixtures, we randomly generate room
sizes and reverberation time (RT60), along with random posi-
tions for the microphone and the C' speakers. Using the gpuRIR
toolkit [32], we apply reverberation to each speaker. Then we
can generate a reverberant, multi-speaker, multi-utterance mix-
ture. The noise is added using the same method as before, re-
sulting in a noisy, reverberant, multi-speaker, multi-utterance
mixture. All synthesized signals are single-channel with a sam-
pling rate of 16 kHz. The training and test sets do not share
speakers, noise signals, or rooms.

We modeled rooms with dimensions randomly selected
from the following ranges: length [4.0, 8.0] m, width [4.0, 8.0]
m, and height [3.0,4.0] m. The RT60 was varied between 0.2
and 0.6 seconds. Microphones were positioned at heights rang-
ing from 1.0 to 1.5 m, while speakers were generated at heights
between 1.5 and 2.0 m. Microphones and speakers were re-
stricted to be at least 0.5 m away from any walls and each other.

4.2. Training Configurations

The A-DCSS model was trained in two phases: first with two-
speaker samples, and then with a dataset containing a varying
number of speakers. We utilized the ESPNet toolkit [33] for
model training, employing the Adam optimizer. For the first
phase, the initial learning rate was set to 1.0 x 1073, while in
the second phase, it was reduced to 1.0 x 107>, Both training
phases were configured to run for a maximum of 200 epochs
with an early stopping strategy. The model architecture was
configured with an encoder/decoder kernel size L of 16 and a
stride of 8 samples. The feature dimensions D and F' were both
set to 256. The chunk length K is 96. We used 4 attention heads
in each transformer layer. The Nuipie Was set to 6. The thresh-
olds Texist and Tgiar Were both set to 0.5. The A, Ag, and A, were
set to 0.8, 0.1, and 0.1, respectively. All these hyperparame-
ters were determined through experiments on the validation set.
During training, the batch size was set to 4, each training sample
was split into 10 second segments in a batch.

4.3. Evaluation Metrics

We evaluate the separation performance of the A-DCSS us-
ing the scale-invariant source-to-distortion ratio improvement
(ASI-SDR) [34]. Diarization performance is measured by the
diarization error rate (DER) [35], which assesses the accuracy
of detecting speaker activity. We also utilize speaker counting
accuracy (SCA) [36] to evaluate the counting performance.

5. Experimental Results

We evaluated the performance of the A-DCSS in two scenarios:
one with a fixed number of speakers and the other with a varying
number of speakers. Besides, an ablation study was conducted



Table 2: Evaluation on 2-speaker & 3-speaker dataset. DER (%)(! ) is diarization error rate. SCA(%)(T) is speaker counting accuracy.

Anechoic Noisy Reverb Noisy & Reverb
Models ASI-SDR  DER SCA \ ASI-SDR DER SCA \ ASI-SDR DER SCA \ ASI-SDR DER SCA
Recursive-SS [13] 6.2 - - 5.5 - - 3.9 - - 3.1 - -
EEND-SS [20] 6.7 84 96.7 6.0 9.7 941 4.6 85 96.2 4.5 102 937
SepEDA [21] 8.6 - 97.5 7.3 - 96.3 6.4 - 96.9 6.7 - 96.1
SepTDA [22] 7.8 - 98.7 6.9 - 97.8 6.0 - 98.2 59 - 97.5
A-DCSS 9.7 59 979 8.8 64 96.7 7.8 62 97.1 7.7 71 964
Table 3: Ablation experiment. 5.2. Unknown Number of Speakers

# \ Attractor Diarization Counting ASI-SDR We evaluated the A-DCSS on a varying number of speakers
1 B — _ 82 dataset combining 2-speaker and 3-speaker scenarios. Due to
2 | Transformer B v 38 potential speaker counting errors, the number of reference sig-
3 | Transformer v v 103 nals may differ from the number of separated speech signals.
4 RNN B v 101 To address this, we added silent audio signals to either the refer-
5 RNN v v 1.2 ence or separated speech signals to match the signal count. Ta-

to analyze the importance of architectural choices. We com-
pare the representative single-channel source separation meth-
ods, including Conv-Tasnet [5] and Sepformer [9]. In addition,
we evaluate four advanced models designed for speech separa-
tion in scenarios where the number of speakers is unknown, as
shown in Table 1.

* Recursive-SS [13]: Employs a recursive structure. The sepa-
ration component is based on Conv-Tasnet [5].

EEND-SS [20]: A baseline system integrating speaker di-
arization, counting, and separation. Both EEND-SS and A-
DCSS adopt a three-task system with similar RNN attractors.
The difference is that EEND-SS uses TCN [5] for feature ex-
traction and separation, while A-DCSS employs transformer-
based feature embedding module and separator, along with
FiLLM [28] for feature fusion.

SepEDA [21]: Integrates speaker counting and separation.
Uses an RNN attractor and a separator based on Sep-
former [9]. In SepEDA [21], the attractor is used only for
speaker counting, whereas in A-DCSS, it is utilized for both
speaker counting and activity detection. Furthermore, the de-
sign of the separation component and the fusion of the attrac-
tor features differs between SepEDA [21] and A-DCSS.
SepTDA [22]: Combines speaker counting and separation us-
ing a transformer attractor and transformer-based separator.
Like A-DCSS, its separation module is inspired by [9]. The
difference is that SepTDA employs transformer attractors for
joint counting and separation, while A-DCSS uses RNN at-
tractors for diarization, counting, and separation.

5.1. Fixed Number of Speakers

We conducted experiments using synthesized datasets of two-
speaker mixtures in four acoustic scenarios, as shown in Ta-
ble 1. In the anechoic condition, the A-DCSS achieves the best
performance. Comparing Conv-TasNet [5], Recursive-SS [13],
and EEND-SS [20], we observe that incorporating recursive
structures (Recursive-SS [13]) or attractor modules (EEND-
SS [20]) enhances separation performance in multi-speaker
multi-utterance scenarios. The attractor outperforms the recur-
sive process. In noisy, reverberant, and noisy-reverberant envi-
ronments, we observe similar trends. Both noise and reverber-
ation cause performance degradation of the A-DCSS, and the
impact of reverberation is greater than that of noise.
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ble 2 presents the results. In all conditions tested, our proposed
method achieved the best performance. All models showed per-
formance degradation compared to the scenario with the fixed
number of speakers. For the DER evaluation, the A-DCSS sig-
nificantly outperformed the EEND-SS [20] baseline. Regarding
the accuracy of source counting, the SepTDA method [22] per-
formed best, with our proposed method ranking second. This
comparison suggests that the transformer attractor outperforms
the RNN attractor for the source count estimation subtask. For
speaker diarization and counting, reverberation had little im-
pact, while noise had a clearer effect.

5.3. Ablation experiment

In multi-utterance scenarios, the attractor module is essential
to the A-DCSS. We conducted ablation experiments using the
two-speaker anechoic dataset, with results in Table 3. The trans-
former attractor follows the SepTDA [22], and the RNN attrac-
tor is detailed in this paper. Diarization and counting represent
two possible output branches of the attractor. All other modules
and parameters remained unchanged during ablation.

When comparing row 1 to the others, the effect of the at-
tractor is significant. Comparing row 2 and row 3, it can be
observed that the ASI-SDR improves by 1.5 dB when addi-
tional diarization constraints are added to the transformer at-
tractors. Similarly, comparing row 4 and row 5 (A-DCSS), the
SI-SDR increases by 1.1 dB when diarization output is incor-
porated into the RNN attractors. This demonstrates the impor-
tance of speaker diarization outputs from attractors for sepa-
ration in multiple utterance scenarios. Further analysis of the
results between row 2 and row 4, as well as between row 3 and
row 5, indicates that the RNN-based attractor outperforms the
transformer-based attractor in our experimental setup. This ob-
servation is also supported by the results presented in Table 1.

6. Conclusions

In this paper, we proposed a novel single-channel joint speech
separation system that effectively handles scenarios with an un-
known number of speakers, where each speaker may contribute
multiple utterances. The system employs an RNN attractor
module to estimate the number of sources and detect source ac-
tivity, resulting in significant improvements in separation per-
formance. Additionally, the proposed method demonstrates ex-
cellent robustness in noisy and reverberant environments.
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