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ABSTRACT

This paper presents a data-driven approach to automatic blind equalization of audio by predicting log-mel spectral
features and deriving an inverse filter. The method uses a deep neural network, where a pre-trained model provides
semantic embeddings as a backbone, and only a lightweight head is trained. This design is intended to enhance
training efficiency and generalization. Trained on both music and speech, the model is robust to noise and
reverberation. Objective evaluations confirm its effectiveness, and subjective tests show performance comparable
to that of an oracle that uses true log-mel spectral features, indicating that the model accurately estimates the
desired characteristics, with remaining limitations attributed to the filtering stage. Overall, the results highlight the
potential of the method for real-world audio enhancement applications.

1 Introduction

Automatic blind equalization (EQ) of speech and mu-
sic is a key aspect in audio processing. The goal is
to adjust the spectrum of an audio signal to achieve a
desired tonal balance without knowledge of the original
recording conditions or the target equalization curve [1].
Such processing enhances the audio listening experi-
ence by improving clarity and consistency. By enabling
data-driven adjustments, EQ can significantly improve
sound quality across a wide range of contexts. Auto-
matic equalization is used in music production [2, 3],
hearing aids [4], and teleconferencing [5].

This problem has been studied extensively. A well-
known approach involves estimating an equalization
curve by averaging the spectral characteristics of a refer-
ence recording or collection of recordings [6, 7]. More
recently, deep learning techniques have been explored,

employing neural networks to model complex example-
dependent spectral transformations. End-to-end con-
volutional networks have been applied to automatic
EQ [8], while methods based on self-supervised frame-
works have been proposed for blind parameter estima-
tion [9, 10, 11]. Closer to this work, Mockenhaupt et al.
[12] estimated EQ targets using a classification-based
approach, though the reliance on manually defined tar-
gets limits flexibility. Generative models have also been
explored, with Moliner et al. applying a diffusion-based
model for equalization and audio restoration [13].

While deep learning has shown promise for EQ, practi-
cal deployment requires models that generalize across
diverse signals and remain robust to noise and rever-
beration. This paper presents a data-driven approach to
blind equalization by predicting log-mel spectral fea-
tures and deriving an inverse filter, explicitly optimized
for robustness and generalization.
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This paper is organized as follows. Sec. 2 defines the
blind EQ problem as an inverse filtering task. Sec. 3
details the proposed method, which combines a pre-
trained feature extractor with a lightweight trainable
head for parameter estimation. Sec. 4 describes the
experimentals, including training on speech and music.
Secs. 5 and 6 present objective and subjective evalua-
tions. Finally, Sec. 7 summarizes key findings.

2 Problem Definition

The problem is how to automatically equalize the tonal
balance of a degraded audio signal towards a reference.
Let x ∈ RL represent a high-quality reference audio
signal. We observe a degraded version of this signal,
y ∈ RL, generated through the forward model:

y =A(x)+n, (1)

where A(·) : RL→ RL is a degradation operator (e.g.,
filtering or nonlinear distortion), and n ∈ RL captures
additive noise from environmental interference, equip-
ment limitations, or other sources. Our objective is to
estimate a reconstruction x̂≈ x. Assuming that A(·) is
a linear time-invariant system, the degradation can be
modeled as a convolution with a finite impulse response
filter h ∈ RK of length K:

A(x)≈ h∗x, (2)

where ∗ denotes discrete convolution. We further as-
sume that the problem is well-conditioned, implying
that the filter is invertible, with inverse h−1. In the
noiseless case, the reference can be approximated as

x≈ x̂ = ĥ−1 ∗y. (3)

Thus, the task of estimating the reference is reduced
to estimating the inverse filter ĥ−1. However, this ap-
proximation does not hold in the presence of noise
n. As we will explain later, this issue is addressed by
pre-processing y with a denoiser. In cases where the
problem is ill-conditioned, such as when portions of
the signal (e.g., certain frequency bands or segments)
are lost or severely degraded, our method is limited to
restoring only the nondegraded parts of the signal.

3 Methods

3.1 Approximating the Inverse Filter

This work aims to estimate the inverse filter h−1
i with-

out any prior knowledge of the forward filter hi, making

it a blind estimation task. The approach is performed in
the frequency domain, where we estimate the inverse
filter Ĥ−1 ∈ CNFFT , based on a chosen FFT size NFFT.

Equation 3 can be written in the frequency domain as

x≈F−1 (Ĥ−1�F(y)
)
, (4)

where F(·) and F−1(·) denote the short-time Fourier
transform (STFT) and its inverse (iSTFT), respectively.
Both transformations are computed using NFFT fre-
quency bins, with a window size and hop size de-
fined in Sec. 4.3. Owing to the Hermitian symmetry
of the Fourier transform for real-valued signals, only
NFFT/2+ 1 bins contain non-redundant information,
and thus only these need to be estimated in practice.

We constrain the inverse filter Ĥ−1 to be a zero-phase
filter, and approximate its magnitude as

|Ĥ−1|=

√
X2

ref
Y2

avg
, (5)

where Y2
avg is the time-averaged Power Spectral Den-

sity (PSD) of the observed signal y, computed as

Y2
avg =

1
M

M−1

∑
m=0
|STFT(y)m|2. (6)

Here, M is the number of STFT frames, and X2
ref de-

notes the target or reference spectral shape, which is
typically content-dependent. The reference X2

ref could
be a user-defined spectral curve, or, more generally, the
average power spectrum of the unknown clean source
x, given in an analogous way as in Eq. (6).

Since the clean source x is unknown, we estimate the
target spectrum X̂2

ref≈X2
ref using a deep neural network

(DNN). The DNN denoted as Eθ (y) is trained to predict
the target spectrum given the observed signal y, where
θ represents the trainable parameters of the network.

Instead of predicting the target spectral shape directly
X̂2

ref, we reduce its dimensionality by using a mel-scale
triangular filterbank. The mel-transformed reference
spectrum zref ∈ RNmel is given by

zref = 10log10(MX2
ref), (7)

where M ∈ RNmel×(NFFT/2+1) represents the mel-scale
filterbank, which compresses the non-redundant fre-
quency bins into fewer mel-scaled bins Nmel. The
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DNN is trained to predict the features zref, such that
Eθ (y) = ẑ≈ zref.

Once we have obtained ẑ, the estimated time-averaged
PSD in the original frequency domain can be computed
by reversing the mel transformation:

X̂2
ref = MT 10ẑ/10. (8)

Here, MT is the transpose of the mel filterbank, which
interpolates the full FFT frequency resolution from the
lower-dimensional mel representation.

3.2 Blind Parameter Estimation

The DNN model Eθ is designed to estimate the log-
mel spectral features z(x) of an original recording x,
given a processed observation y. The target parame-
ters z(x) are extracted from the clean signal x using a
procedure described in Sec. 3.1. During training, the
observation y is generated by applying a forward trans-
formation f (x) to the same original recording. This
transformation introduces a range of perturbations, in-
cluding randomized spectral coloration, variations in
loudness, room reverberation, and additive noise. This
makes the spectral parameter estimation non-trivial.

We hypothesize that z(x), being both time-averaged
and compressed through a mel filterbank, is correlated
with the type of content in the input signal. For exam-
ple, orchestral music tends to have a distinct spectral
envelope, while speech has a different one, and charac-
teristics like gender or age may further affect the spec-
tral shape of speech signals. Based on this, the model
Eθ (y) is expected to extract semantic information from
the processed signal y and map it to the corresponding
log-mel spectral features ẑ.

To achieve this, we propose factorizing the DNN model
Eθ into two components, such that

Eθ (y) = (MLPθMLP ◦CLAPθCLAP)(y), (9)

where CLAPθCLAP is a pretrained audio encoder [14],
and MLPθMLP is a small multi-layer perceptron (MLP)
that learns the mapping from Contrastive Audio Lan-
guage Pretraining (CLAP) embeddings to log-mel spec-
tral features. CLAP is a joint audio-text encoder trained
via contrastive learning, mapping audio and text pairs
into a shared embedding space. We use the audio en-
coder of CLAP, with its parameters frozen during train-
ing, to extract semantic features from the signal y.

Previous work has shown that embeddings from CLAP
and similar models often fail to capture the details of
audio effects and transformations, such as those intro-
duced by spectral processing, limiting their sensitivity
to these changes [15, 16]. This is beneficial in our case,
as it suggests that the forward operator f (·), which
introduces spectral coloration, may not significantly
affect CLAP-derived embeddings. Thus, MLPθMLP can
focus on learning the relationship between the extracted
embeddings and the log-mel spectral features.

The parameters of z(x) typically exhibit varying mag-
nitudes, which generally decrease logarithmically as a
function of frequency. Normalizing both the input and
target data is beneficial during neural network training,
as it ensures consistent scaling and improves model
convergence. To achieve uniform error impact across
all frequency bands, we first compute the average zavg
coefficients from a representative subset of the training
data. The model is then trained to estimate the deviation
of each instance from this average, ensuring balanced
attention across the different frequency components.

The parameter estimation model Eθ is optimized using
the following loss function:

L= Ex∼px, f (·)∼p f

[
‖Eθ ( f (x))− (z(x)− zavg)‖1

]
,

(10)
where x represents clean audio data sampled from a
distribution px (e.g., a dataset of recordings), and the
forward operator f (·) is sampled from a distribution p f ,
representing different types of data augmentations. As
illustrated in Fig. 3, these degradations include room
reverberation, randomized spectral coloration, additive
noise, and gain randomization. Importantly, since the
CLAP encoder is frozen during training, only the pa-
rameters of the MLP θMLP ⊂ θ are optimized based
on the loss objective. It is important to note that, due
to the `1-norm minimization objective, at convergence
the network Eθ approximates the conditional median
of z(x) given the transformed input f (x) under the
training data distribution. Thus, the estimated power
spectrum ẑ = Eθ ( f (x)) can be interpreted as

ẑ≈medianz∼p(z| f (x))[z− zavg]+ zavg, (11)

where the median is computed implicitly over the target
distribution defined by the training dataset.

The training process is illustrated in Fig. 1, and the
signal processing conducted at inference time is sum-
marized in Fig. 2. For simplicity, the detail of zavg is
omitted in both Fig. 1 and 2.
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x y

z ẑ

f (·)

noise n
Avg. Power
Spectrum

Mel filterbank

CLAP

MLP

L1 loss

Fig. 1: Training diagram.

x̂

y

ẑ Mel interp.

F−1
(√

X̂2
avg

Y2
avg
�F(y)

)

X̂2
ref

CLAP

MLP

Enhancement
(optional)

Avg. Power
Spectrum

Y2
avg

Fig. 2: Inference diagram.

4 Experiments

4.1 Training Data Pipeline

We develop a single model capable of processing both
speech and music. The model is designed to exhibit
robustness to background noise, gain variations, and
reverberation, necessitating the inclusion of these dis-
turbances within the training data pipeline. We utilize
the speech datasets VCTK [17] and EARS [18], both of
which consist of high-quality studio speech recordings
sampled at 48 kHz, and which overall contain around
200 different speakers.

We choose MedleyDB [19] and DSD100 [20] as the
music datasets, both offering studio-quality recordings
across various genres such as rock, pop, classical, and
jazz. These datasets are mixed by recording engineers,
allowing us to consider the spectral balance as an ap-
propriate target. Although the datasets provide isolated
stems for every source in the microphone, we limit our
use to the mixed tracks. Every audio segment under-
goes loudness normalization to achieve a standardized
volume level of −18 LUFS. This procedure guarantees
a consistent loudness target, ensuring uniformity across
different audio files.

The degradation process is outlined in Fig. 3, illustrat-
ing the practical implementation of f (·) as shown in

x yRIR
h(t)

Random EQ
filter H( f )

noise n

Random RMS
normalization

Fig. 3: Pipeline illustrating the applied degradations.

Fig. 1. Initially, an audio segment with approximately
7 s in duration, containing either speech or music, is
convolved with a room impulse response (RIR). We
specifically use RIRs from the Arni dataset [21]. Sub-
sequently, the audio is subjected to an equalization
filter featuring random gains across various frequency
bands. This filter is constructed in the frequency do-
main as a zero-phase FIR filter. The gain for a set of
26 bark-scaled frequency bands is stochastically sam-
pled on a log-uniform scale ranging from -20 to 20
dB. In the next phase, noise is introduced. For noise
sources, the TAU Urban Acoustic Scenes dataset [22]
is employed during training. This dataset is integrated
with speech and music by mixing with noise from this
dataset, achieving an SNR that is log-uniformly sam-
pled between 5 and 50 dB.

Finally, the gain of the mixture is adjusted through
a random root-mean-square (RMS) normalization.
The RMS normalization is implemented as y =
(α
√

L/‖x‖2)x, with the parameter α being uniformly
sampled within −5 dB and 30 dB.

4.2 Training Details

The training of the model consisted of conducting
100,000 iterations, utilizing the Adam optimization
algorithm. The learning rate employed during this pro-
cess was set to 1×10−4, and the values of the beta mo-
mentum parameters were configured to be (0.9, 0.999).
For the training data, audio segments of 7 s sampled at
48 kHz were used. The training was performed with a
batch size of 16.

We chose a number of mel-frequency coefficients
Nmel = 32, extracted using the STFT with FFT size
2048, a Hann window with size 1024, and a hop length
of 256 samples. The employed MLP contains 0.34 M
parameters and is based on three linear layers with a
hidden size of 256 and Leaky-ReLU nonlinearities.

4.3 Evaluation Data

The model is evaluated on speech and music, and in dif-
ferent scenarios, according to the applied degradations.

AES International Conference on Machine Learning and Artificial Intelligence for Audio, London, UK
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We distinguish the following scenarios: 1. Speech
equalization, 2. Music equalization, 3. Noisy speech
equalization, and 4. Reverberant speech equalization.

For scenarios 1, 3, and 4, we evaluate on VCTK
speakers “p351”, “p360”–“p364”, “p374”, “p376” and
EARS speakers “p100”–“p107”. In scenario 2, we
extract 8-s segments from separated test splits of Med-
leyDB and DSD100. For each of these scenarios, a
test set comprising 1,000 samples is created. To each
example, a random filter is applied following the same
procedure used during training, and the gain is ran-
domized with an RMS in the interval [0.005, 0.30],
extending the range seen at training time.

In scenario 3, we introduce noise from the DEMAND
dataset [23] and apply SNRs ranging between −5 dB
and 30 dB, which also extends beyond the training
range. Finally, in scenario 4, the signals are convolved
with RIRs, utilizing simulated RIRs from pyrooma-
coustics [24], with a reverberation time T60 spanning
[0.1, 1.0]. In both scenarios, we apply DeepFilterNet2
[25] to pre-process audio signals that are either noisy
or reverberant. DeepFilterNet2 was selected due to
its open-source availability, lightweight architecture,
high processing speed, and acceptable performance. It
is important to note that the original signal remains
accessible to the model, while the pre-processing is
integrated into the equalization pipeline, as shown in
Fig. 2.

4.4 Metrics

To evaluate the performance of the model, we consider
several metrics that provide a comprehensive analysis
of its effectiveness in estimating the power spectrum
and enhancing audio signals. These metrics capture
both spectral accuracy and audio-domain fidelity.

We compute the L1 error between the target average
power spectrum extracted from the reference high-
quality recording and the estimated power spectrum.
This metric corresponds directly to the loss function
used during training, as defined in Eq. (10). It provides
a measure of how closely the model’s predictions align
with the target power spectrum, reflecting its ability to
learn accurate spectral representations.

To evaluate the fidelity of the equalized audio signal,
we employ the Log-Spectral Distortion (LSD), which
measures differences in spectral features between the

reference and predicted audio signals. The LSD is
computed as

LSD =
1

MK ∑
m,k

∣∣log(|F(x)|+ ε)− log(|F(x̂)|+ ε)
∣∣,

(12)
where F represents the Short-Time Fourier Transform
(STFT) operator, M is the number of time frames, K is
the number of frequency bins, and ε is a small constant
(e.g., 10−6) to avoid logarithmic instabilities.

While these objective metrics are useful for evaluat-
ing model performance, they are not always directly
indicative of perceptual quality. For example, the equal-
ization applied to music examples may deviate from
the median power spectrum the model predicts. This
is because the model’s estimation inherently reflects
the statistical properties of the training data, whereas
real-world audio signals often exhibit unique spectral
characteristics. Thus, while the metrics provide quanti-
tative insights, qualitative evaluation through listening
tests is essential to fully assess the method’s impact on
perceptual audio quality.

4.5 Baselines

To contextualize the performance of our proposed
method, we designed and evaluate the proposed method
against several baselines. The first baseline, which we
call Average, computes the average power spectrum of
the training data, and uses that to compute the inverse
filter in Eq. (5). We compute the average of the speech
data and music data separately. By using these fixed
average spectra as predictions, this baseline is meant to
highlight the effectiveness of the proposed method at
leveraging data-specific patterns compared to a naive
global estimate.

The second baseline, which we call End-to-end, re-
places the frozen CLAP encoder with a fully trainable
encoder, allowing the model to jointly optimize feature
extraction and power spectrum estimation. We used the
same neural network architecture as in the setup from
Steinmetz et al. [9]. This baseline aims to demonstrate
the advantages of using a pre-trained representation
over task-specific feature learning.

Finally, the Oracle baseline uses parameters directly
estimated from the reference high-quality audio signal,
bypassing the need for a model prediction. This serves
as an upper bound on performance within our frame-
work, illustrating the best possible outcome achievable
when the target parameters are perfectly known.
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5 Objective Evaluation

5.1 Speech Equalization and Gain Adjustment

In this scenario, speech signals undergo arbitrary EQ
and random RMS processing. The outcomes are de-
picted in Fig. 4. Each plot displays the median curves
represented by colored lines, with the InterQuartile
Range (25%-75%) illustrated as shaded regions. Fig-
ure 4a illustrates L1 errors on parameter estimation
in relation to frequency, highlighting increased errors
in higher frequency ranges. Both the Proposed and
End-to-end models display comparable performance,
surpassing the Average model. Figure 4b presents L1 er-
rors concerning the RMS of the altered signal, showing
consistent performance across all RMS levels, despite
training only within the [0.02, 0.18] interval. Perfor-
mance seems similar even beyond this range. Figure
4c depicts LSD relative to frequency, indicating that
Proposed, Average, and End-to-end perform similarly,
though less effectively than the Oracle condition. In
Figure 4d, LSD errors in relation to RMS reveal higher
errors at lower RMS values, even in the Oracle scenario,
underscoring a fundamental limitation of the employed
inverse filter approach (see Eq. (5)).

5.2 Music Equalization and Gain Adjustment

In Scenario 2, musical signals were processed utilizing
randomized equalization filters and gain levels. The
outcomes, illustrated in Fig. 5 and mirroring the data
from Fig. 4, exhibit patterns akin to those identified in
Scenario 1. Nevertheless, here, both the Average and
End-to-end baselines demonstrate significant perfor-
mance reduction across all metrics. This deterioration
in the Average baseline’s effectiveness is probably at-
tributable to the wider variability found in music as
opposed to speech. The Proposed model sustains supe-
rior overall performance compared to the End-to-end
baseline, suggesting that the use of pretrained CLAP
embeddings facilitates robust feature extraction, even
for the more complex music signals. This scenario is
also evaluated through subjective listening in Sec. 6.

5.3 Noisy Speech Equalization

This scenario investigates the impact of background
noise on inverse filter estimation by analyzing the re-
lationship between the objective metrics and the input
SNR. Figure 6a presents the L1 error of the estimated

parameters as a function of SNR. Both the Proposed
and End-to-end methods exhibit similar performance,
with a noticeable but relatively minor increase in error
at lower SNRs, which aligns with expectations given
the added noise.

The LSD metric, defined between audio waveforms, is
affected by the speech enhancement model used for pre-
processing. In Fig. 6b, we evaluate performance using
DeepFilterNet2 [25] for speech enhancement prior to
equalization. Here, all methods exhibit similar trends,
heavily influenced by the SNR. To explore an idealized
scenario, we apply the estimated equalization (derived
from noisy measurements) to a noiseless version of
the degraded signal, simulating perfect denoising while
retaining spectral coloration. As shown in Fig. 6c, this
setup significantly improves LSD performance, achiev-
ing near-uniform results across the SNR range. In this
case, the Proposed and Average conditions perform
comparably, while the End-to-end baseline shows a
noticeable decline in performance.

5.4 Reverberant Speech Equalization

This scenario builds upon the analysis in Sec. 5.3, shift-
ing the focus to robustness against reverberation. We
examine how different metrics vary with the reverbera-
tion time applied to the measurements. Figure 7a shows
the L1 parameter estimation error as a function of the
reverberation time, T60. The Proposed and End-to-end
methods perform similarly, with a slight increase in
error at longer T60 values.

Figure 7b depicts the audio-domain LSD metric with
respect to T60, where the equalization is applied to sig-
nals enhanced by DeepFilterNet2. As in Sec. 5.3, the
metrics are heavily influenced by the performance of
the speech enhancement model, overshadowing the un-
derlying robustness of the equalization methods. To
address this limitation, we repeat the experiment un-
der an idealized scenario where perfect dereverbera-
tion is assumed. Specifically, the reference dry sig-
nal is equalized using the inverse filter estimated from
the reverberant measurement. The result, presented in
Fig. 7c, shows that the correlation between the metrics
and T60 becomes negligible under these conditions. In
this idealized setup, the Proposed method outperforms
End-to-end and demonstrates a marginal but consistent
advantage over the Average method in terms of LSD,
further highlighting its robustness to reverberation.
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Fig. 4: Objective metrics from Scenario 1: Equalization and gain adjustment for speech.
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Fig. 5: Objective metrics from Scenario 2: Equalization and gain adjustment for music.

6 Subjective Evaluation

The goal of the listening test was to evaluate the per-
formance of the proposed method for music equal-
ization, focusing on subjective preference. As music
equalization is inherently subjective, we aimed to deter-
mine which type of equalization participants preferred.
The primary question for the test was simple: “Which
one do you prefer?”. Participants were encouraged to
choose randomly when they were unsure.

The test followed a pairwise comparison preference
method, where participants were presented with two
audio samples and asked to choose the one they pre-
ferred. This allowed for direct comparisons between
different equalization conditions. We selected four mu-
sic excerpts, each approximately 7 s long, from four
different genres: Jazz, Opera, Pop, and Rock. These
samples are available in the attached material.

Participants assessed five distinct scenarios: the Ref-
erence condition, featuring the untouched audio; the
Distorted condition, where the original audio sample
was pre-processed with a random equalization filter be-
fore serving as input for subsequent methods; the Pro-
posed condition, which was treated using the technique
suggested in this study; the Oracle condition, which uti-
lized the same equalization approach as the Proposed
but with access to the reference for calculating the av-
erage power spectra; and the Average condition, which
employed an average equalization approach based on

the spectral average of the music training dataset. All
samples were loudness-normalized preceding the tests
to ensure that evaluations focused on spectral coloration
rather than differences in loudness. Every pairwise
comparison was conducted twice to eliminate potential
biases that might occur if users tend to favor the letters
A or B when uncertain. Additionally, all pages were
displayed in a random sequence.

We implemented the test using the WebMUSHRA tool
[26], with an unofficial version adapted specifically
for preference tests 1. The test involved 8 participants,
who all completed it in less than 15 min. The test was
intentionally kept brief to prevent participant fatigue.
All participants had prior experience with listening
tests. The average age was 28, with an equal gender
distribution. No participants were excluded.

6.1 Listening Test Results

The counts are aggregated across all participants and
trials. The combined results for all genres are provided
in Table 1. Figure 8(e) also summarizes the aggregated
results of the pairwise comparison of the proposed
method with the other conditions. The tables show,
for each possible pair, the number of wins, i.e., the
times a participant chose one over the other. These
tables illustrate, for each possible pair of conditions,
the number of times participants preferred one option

1https://github.com/Simon-Stone/webMUSHRA/tree/preference_test
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Fig. 6: Objective metrics from Scenario 3: Equalization and gain adjustment for noisy speech
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Fig. 7: Objective metrics from Scenario 4: Equalization and gain adjustment for reverberant speech

over the other. The results from the Jazz, Opera, Pop
and Rock examples are represented in Table 2. Figures
8(a–d) also show the results of the comparison of the
proposed method with the other four conditions.

For each pair, a statistical analysis was performed to
determine whether the observed preference was signif-
icant. Specifically, a Z-test for proportions was con-
ducted, comparing the proportion of times each con-
dition was selected. The Z-statistic quantifies the dif-
ference between these proportions, taking into account
the sample size and variability. A positive Z-statistic
indicates that the first condition (e.g., “Option A") was
preferred more often than the second (e.g., “Option
B"), while a negative Z-statistic suggests the opposite.
The p-value associated with the Z-statistic represents
the probability that the observed difference in prefer-
ences could occur due to random chance. A p-value be-
low 0.01 is typically considered statistically significant,
suggesting that participants had a genuine preference
rather than random variability. The tables use color
coding to highlight statistically significant results. The
condition preferred more frequently in significant com-
parisons is highlighted in green as the winner, while
the less-preferred condition is highlighted in red.

Table 1: Aggregated preference listening test results across
all genres. In the statistically significant cases (P <
0.01), the winning and losing methods are indicated
with green and red font, respectively.

Option A Option B Wins A Wins B Z-Statistic P-Value

proposed average 51 13 6.72 1.85e-11
proposed oracle 31 33 -0.35 0.72
proposed distorted 60 4 9.90 4.18e-23
proposed reference 15 49 -6.01 1.85e-09

oracle average 40 24 2.83 0.0047
oracle distorted 58 6 9.19 3.84e-20
oracle reference 15 49 -6.01 1.85e-09
average distorted 55 9 8.13 4.23e-16
average reference 8 56 -8.49 2.15e-17
distorted reference 6 58 -9.19 3.84e-20

6.2 Discussion

The results provide meaningful insights into the per-
formance of the tested methods across all genres. As
expected, Table 1 shows that the distorted condition
was always rated the lowest, underscoring the detrimen-
tal impact of the applied random EQ filter on perceived
audio quality. The proposed method outperformed or
performed comparably to the average condition, with
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Table 2: Results of the preference test across various genres.
For brevity, paired comparisons between conditions
other than the proposed method are omitted.

Genre Option A Option B Wins A Wins B Z-Statistic P-Value

Jazz proposed average 8 8 0.00 1.00
proposed oracle 8 8 0.00 1.00
proposed distorted 16 0 5.66 1.54e-08
proposed reference 5 11 -2.12 0.03

Opera proposed average 13 3 3.54 0.0004
proposed oracle 12 4 2.83 0.0047
proposed distorted 16 0 5.66 1.54e-08
proposed reference 7 9 -0.71 0.48

Pop proposed average 14 2 4.24 2.21e-05
proposed oracle 7 9 -0.71 0.48
proposed distorted 15 1 4.95 7.43e-07
proposed reference 2 14 -4.24 2.21e-05

Rock proposed average 16 0 5.66 1.54e-08
proposed oracle 4 12 -2.83 0.0047
proposed distorted 13 3 3.54 0.0004
proposed reference 1 15 -4.95 7.43e-07

Preference Test Results: All Genres

Averaged Oracle Distorted Reference
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20

30

40

50

60

W
in

s

Proposed method

Fig. 8: Listening test results from pairwise comparison of the
proposed method. The data correspond to the Wins A
and B in the four first lines of Table 1.

Jazz being an exception where the proposed method
and the average condition yielded similar results, as
can be seen in Table 2. This highlights the capability
of the proposed method to retrieve data patterns.

When compared to the Oracle condition, the proposed
method demonstrated comparable results in the aggre-
gated analysis of Table 1, with no significant differ-
ences observed. This is particularly noteworthy be-
cause it suggests that the blind power spectrum estima-
tor employed in the proposed method nearly reaches the
performance bound under the given conditions. Inter-
estingly, in the Opera genre, the proposed method out-
performed the Oracle condition, see Table 2. This out-
come may stem from the fact that the median estimate
of the average power spectrum (see Eq. (11)), used
in the proposed method, is subjectively more pleasing
than the one derived directly from the reference.

However, both the proposed method and the Oracle con-

dition were consistently rated lower than the Reference
condition, as seen in Table 1. This points to a limitation
of the inverse filter approximation. The Reference con-
dition serves as an idealized target, and the observed
quality gap between the Oracle method and the Ref-
erence condition suggests that further refinement is
needed. One promising avenue for improvement could
involve increasing the resolution of the estimated coef-
ficients by expanding the number of frequency bands
in the set of parameters that the model estimates.

7 Conclusions

This paper introduces a method for automatic audio
equalization using blind power spectrum estimation
combined with inverse filtering, showcasing reliable
performance across various challenging conditions.
The approach has been designed to work with both
speech and music and to be robust to noise and re-
verberation. The proposed method shows a distinct
advantage when processing audio with varied semantic
content, such as music, while its benefit over baseline
methods is less pronounced for speech. Our listen-
ing test results indicate a marked preference for this
method in different music genres, achieving results
close to Oracle level without the need for reference
data. However, the gap between the proposed method
and the Reference baseline highlights opportunities for
further improvement. Current limitations are primarily
linked to the inverse filtering stage, particularly the use
of a subsampled spectrum via a mel-scale filterbank.
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