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ABSTRACT

Generative adversarial networks (GANs) and diffusion mod-
els have recently achieved state-of-the-art performance in
audio super-resolution (ADSR), producing perceptually con-
vincing wideband audio from narrowband inputs. However,
existing evaluations primarily rely on signal-level or percep-
tual metrics, leaving open the question of how closely the
distributions of synthetic super-resolved and real wideband
audio match. Here we address this problem by analyzing the
separability of real and super-resolved audio in various em-
bedding spaces. We consider both middle-band (4 → 16 kHz)
and full-band (16 → 48 kHz) upsampling tasks for speech
and music, training linear classifiers to distinguish real from
synthetic samples based on multiple types of audio embed-
dings. Comparisons with objective metrics and subjective
listening tests reveal that embedding-based classifiers achieve
near-perfect separation, even when the generated audio attains
high perceptual quality and state-of-the-art metric scores.
This behavior is consistent across datasets and models, in-
cluding recent diffusion-based approaches, highlighting a
persistent gap between perceptual quality and true distribu-
tional fidelity in ADSR models. Code and demo are available
at https://github.com/msilaev/ADRS .

Index Terms— GAN, discriminator, data distribution,
separability, feature representations, bandwidth expansion,
audio super-resolution

1. INTRODUCTION

The primary objective of generative adversarial networks
(GANs) [1] is to generate synthetic (’fake’) samples that
closely resemble real data, effectively sampling from a dis-
tribution approximating the real one. Evaluating how well
GANs achieve this goal remains a fundamental challenge,
as traditional metrics often fail to capture perceptual qual-
ity, diversity and overfitting to the training data. Reliable
evaluation is crucial for understanding model behavior and
guiding improvements in generative quality. To evaluate
GAN performance, various approaches have been proposed.
For example, the representational quality of a GAN’s discrim-
inator is evaluated by reusing its frozen intermediate layers

Fig. 1: Feature extraction and ’real’/’fake’ classification task.
(a) Discriminator-based classifier uses internal discriminator
features produced by its pre-fully connected (pre-FC) layers
with frozen weights. (b) External classifier operating on in-
dependent features extracted by a separate network, enabling
an analysis of potential representation bias between the two
classifiers.

as feature extractors for supervised downstream tasks, such
as image classification [2]. Classifiers trained on learned rep-
resentation embeddings have been used to measure privacy
preservation in the speech and audio domains, including au-
tomatic speech recognition [3] and sound event detection [4].

A complementary direction compares the statistical sim-
ilarity of real and generated samples in embedding spaces
such as that induced by a pretrained Inception network [5,
6, 7]. Such embeddings enable quantitative metrics like the
Fréchet Inception Distance [5], Fréchet Audio Distance [8],
Deep Speech Distance [9], and precision–recall measures [6,
7, 10], which assess the overlap and coverage between real
and synthetic data manifolds.

However, these evaluation strategies have not been sys-
tematically applied to GAN-based super-resolution tasks, ei-
ther in image [11] or audio [12] domains. In this work, we ex-
tend the assessment of GANs and recently proposed diffusion
models [13, 14] by addressing a straightforward yet practi-
cally important question: Can linear classifiers trained on ei-
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ther frozen discriminator representations (Fig. 1a) or external
embeddings (Fig. 1b) reliably distinguish real wideband from
super-resolved audio samples?

We focus on the practically relevant audio super-resolution
(ADSR) problem, which aims to enhance low-bandwidth
audio signals by generating new high-frequency content,
thereby expanding their spectral range. This topic has at-
tracted considerable research interest in recent years [13, 14,
15, 16, 17, 18, 19, 12, 20, 21, 22]. The evaluation of GANs
and diffusion models for ADSR has focused on signal-level
metrics such as signal-to-noise ratio (SNR), log-spectral dis-
tance (LSD), and perceptual measures including mean opin-
ion score (MOS) and subjective listener tests [12, 18]. In con-
trast, GAN-specific evaluations have not yet been explored.
This gap is particularly relevant for full-band ADSR [12],
which is the primary focus of the present work, where con-
ventional objective metrics and human listeners often struggle
to capture the subtle, yet perceptually important differences
between real and synthesized signals.

The rest of the paper is organized as follows. The GAN-
based ADSR and architectures are outlined in Sec. 2. The
concept of ’real’/’fake’ classifiers is explained in Sec. 3. Eval-
uation results including objective metrics, MUSHRA (Multi-
Stimulus Test with Hidden Reference and Anchor) listening
test [23] for the full-band ADSR and classifier accuracy are
reported in Sec. 4. Conclusions are presented in Sec. 5.

2. AUDIO SUPER-RESOLUTION MODELS

Given audio signal x = [x(n/fs)], n = 0, ..., N the
ADSR task aims to reconstruct an upsampled signal y =
[y(m/rfs)], m = 0, ..., rN , where r is the upsampling ra-
tio. The input and upsampled signals thus have lengths N
and rN , respectively, but share the same duration N/fs. In-
creasing the sampling rate fs → rfs expands the Nyquist
frequency from fs/2 to rfs/2, allowing new frequency com-
ponents in the band [fs/2, rfs/2]. The original and upsam-
pled signals are referred to as narrowband (NB) and wideband
(WB), respectively.

Deep learning methods for ADSR have advanced rapidly,
evolving from supervised models such as AudioUNet [22] to
GAN-based and diffusion-based generative models [18, 19,
20, 21, 24]. In this work, we adopt the MU-GAN (Multi-
scale U-Net GAN) architecture, originally proposed for the
4 → 16 kHz ADSR [19]. We further extend MU-GAN to
the full-band 16 → 48 kHz ADSR. Due to limited imple-
mentation details and the absence of publicly available code,
we re-implemented, trained, and evaluated the model from
scratch. As a supervised baseline, we employ the AudioUNet
model [22] for both 4 → 16 kHz and 16 → 48 kHz upsam-
plings. The trained MU-GAN discriminator features are used
as embeddings for the ’real’/’fake’ classification task across
all considered models.

Both AudioUNet and MU-GAN models were imple-

mented in PyTorch1 and trained using the VCTK speech
dataset [25] for 4 → 16 kHz and 16 → 48 kHz ADSR, and
the FMA-small music dataset [26] for 16 → 48 kHz ADSR.
We used the official train/validation/test splits for the FMA
dataset [26] and the train/test split for the VCTK dataset,
following the protocol used in previous works [12, 19, 22].
Training was performed on a single NVIDIA A100 GPU. For
the VCTK dataset, both models were trained for 500 epochs.
For the FMA-small dataset, AudioUNet and MU-GAN were
trained for 100 and 80 epochs, respectively, with early stop-
ping. The learning rate was set to 10−4 and the mini-batch
size to 128. The generator and discriminator were opti-
mized using Adam and stochastic gradient descent (SGD),
respectively. To stabilize adversarial training, we adopted a
scheduled update strategy, where the generator was updated
more frequently than the discriminator. For the converged
MU-GAN models, the discriminator achieved an accuracy of
approximately 51% on the VCTK dataset and 49% on the
FMA dataset, indicating that the model reached the desired
equilibrium characteristic of well-trained GANs, where real
and generated samples become nearly indistinguishable.

To enable comparison with state-of-the-art methods for
full-band ADSR, we use HiFi-GAN, originally proposed
for denoising and bandwidth extension [12], and two recent
diffusion-based models, FlowHigh [13] and FlashSR [14],
both capable of upscaling audio from arbitrary input sam-
pling rates to 48 kHz. For our experiments, we use the
publicly available unofficial HiFi-GAN implementation with
pretrained weights for inference [24], and the official infer-
ence code released for FlowHigh2 and FlashSR3.

3. ’REAL’ / ’FAKE’ AUDIO CLASSIFIERS

Classifiers capable of distinguishing real and synthetic audio
clips are trained and evaluated using several labeled embed-
ding datasets. These datasets are constructed by transforming
real and synthetic audio signals into fixed-length embeddings
using different feature extractors. Several types of embed-
dings are considered. First, to study the quality of learned
representations, we use features extracted from the fixed pre-
FC layer of the MU-GAN discriminator (Fig. 1a). In our
implementation, an 8192-sample input is mapped to a 32-
dimensional embedding vector by this discriminator layer.

In addition, two types of external embeddings are em-
ployed (Fig. 1b). The OpenL3 [27] model generates a 512-
dimensional embedding vector from a 1-second audio seg-
ment. This model is suitable for the 4 → 16 kHz ADSR task
but cannot be reliably applied to the 16 → 48 kHz setting due
to its limited input bandwidth, which prevents it from captur-
ing the full frequency content of 48 kHz audio.

1https://github.com/msilaev/ADRS
2https://github.com/resemble-ai/flowhigh
3https://github.com/jakeoneijk/FlashSR_Inference
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To address the bandwidth limitations of OpenL3, log-Mel
spectrogram energies are used as an alternative feature rep-
resentation. We use 256 Mel-frequency bins, an FFT size of
4096, and a hop length of 256. The upper frequency limit
is set by the Nyquist frequency, corresponding to 8 kHz and
24 kHz for input sampling rates of 16 kHz and 48 kHz, re-
spectively. To produce fixed-length embeddings that are inde-
pendent of input duration, adaptive average pooling is applied
along the temporal dimension.

Table 1: LSD and SNR metrics for different models

VCTK FMA

Model LSD SNR LSD SNR LSD SNR
4→16 4→16 16→48 16→48 16→48 16→48

AudioUnet 4.5 15.4 4.2 22 9.2 24.5
MU-GAN 3.9 14.6 4.2 20.8 6.7 27.3
HiFi-GAN – – 2.1 17.5 – –
FlowHigh – – 3 -6.8 3.6 -3
FlashSR – – 3.9 16 8.4 18.2

4. EVALUATION AND RESULTS

To evaluate the performance and perceived realism of ADSR
models, we combine objective signal comparison metrics,
signal-to-noise ratio (SNR), and logarithmic spectral distance
(LSD) with MUSHRA listening tests.

4.1. Evaluation of Signal-Level Performance

Table 1 summarizes the SNR and LSD results, mainly to
show that no unexpectedly low or high values are observed.
The 4 → 16 kHz ADSR results are consistent with previous
work [19, 22], and, as in those studies, LSD is computed
using the natural logarithm.

A notable observation is that the FlowHigh model yields
negative SNR values while achieving lower LSD than Au-
dioUNet and MU-GAN. The negative SNR does not indicate
degraded perceptual quality but instead arises from a global
amplitude scaling factor, which may vary across samples.

No significant differences are observed between HiFi-
GAN, AudioUNet, and MU-GAN scores. However, as shown
below, the SNR and LSD metrics correlate poorly with human
listening results, which reveal clear perceptual differences be-
tween models’ outputs.

4.2. MUSHRA listening test

For evaluation, 12 recordings were randomly selected from
the VCTK test set, ensuring an equal number of male and
female speakers. Original WB recordings at 48 kHz were
down-sampled to 16 kHz and then up-sampled back to 48

(a) (b)

Fig. 2: Listener scores for different ADSR methods.
MUSHRA scores for listening tests across different condi-
tions WB, MU-GAN, AudioUnet, HiFi-GAN, LP 3.5kHz,
Spline-Up 7kHz. (a) Inter-quartile range (IQR), medians, and
mean values by green triangles. (b) Mean scores with error
bars representing 95% confidence intervals.

kHz using three different ADSR models: AudioUnet, MU-
GAN, and HiFi-GAN. Each recording was supplemented by
two anchor signals: a low-pass filtered version at 3.5 kHz and
a middle-pass filtered version at 7 kHz. Furthermore, the orig-
inal NB recording was included. This yields six experimen-
tal conditions. The listening test was implemented using the
MUSHRA listening test interface, which allowed listeners to
set loops if they wanted to focus on particular short passages
of the audio signal.

Listening test results are shown in Fig. 2 following the
MUSHRA recommendations [23]. The box plot in Fig. 2a
shows the distribution of MUSHRA scores for six condi-
tions: WB, MU-GAN, AudioUnet, HiFi-GAN, LP 3.5 kHz,
and Spline-Up 7 kHz, highlighting median, IQR, mean val-
ues, and outliers. The bar graph in Fig. 2b shows the mean
scores with 95% confidence intervals. MU-GAN achieves
the highest score, closely matching the WB reference, while
HiFi-GAN performs the worst, closely resembling the 7 kHz
anchor. AudioUnet performs slightly better. Non-overlapping
confidence intervals in Fig. 2b show that listeners can reliably
distinguish between real and synthetic audio, even though the
perceptual quality of the MU-GAN outputs remains compa-
rable to that of the target WB recordings. In the next section,
we demonstrate that this distinction is also captured by binary
classifiers.

4.3. ‘Real’/‘Fake’ Classifier Accuracy

The embedded datasets are constructed using audio clips from
the test subsets of the VCTK (speech) and FMA-small (mu-
sic) datasets, which were not seen during the training of any
considered model. Each embedding dataset is randomly shuf-
fled and split into training (80%) and testing (20%) subsets.
Before classification, the feature vectors are standardized to
have zero mean and unit variance. A linear discriminant anal-
ysis (LDA) classifier is then trained on the normalized train-



ing data and evaluated on the test data to assess its ability to
distinguish between real and fake samples. Additionally, the
test embeddings are projected into the discriminant subspace
learned by LDA, where class separation is maximized. This
projection enables a qualitative visualization of class overlap
and separability along a single discriminant axis.
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(b) MU-GAN 16 kHz, OpenL3
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(d) AudioUnet 16 kHz, OpenL3
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(e) MU-GAN 48 kHz, Discriminator
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(f) MU-GAN 48 kHz, log-Mel
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(h) AudioUnet 48 kHz, log-Mel

Fig. 3: LDA projections for audio clips from VCTK test
dataset, calculated using MU-GAN discriminator features
(left column), OpenL3 (right column b,d) and log-Mel (right
column f,h) embeddings. (a-d) 4 → 16 kHz and (e-h)
16 → 48 kHz ADSR.

Example LDA distributions for different embedding
spaces are shown in Fig. 3. Panels corresponding to (a,c,e)
discriminator pre-FC feature embeddings show completely
overlapping distributions for the 4 → 16 kHz MU-GAN,
partial overlap for the 16 → 48 kHz MU-GAN, and almost
complete separation for AudioUNet. On the one hand, this
demonstrates that the discriminator learns useful features
capable of distinguishing real from synthetic clips. On the
other hand, the clear difference in distribution overlap be-

tween MU-GAN and AudioUNet indicates that the generator
is trained to make these distributions more similar.

In contrast, panels (b,d) and (f,h) show that LDA projec-
tions of the OpenL3 and log-Mel embeddings demonstrate
complete ’real’/’fake’ class separation, achieving 100% clas-
sification accuracy. Note that panels (e,f) and (g,h) corre-
spond to MU-GAN and AudioUnet models for 16 → 48 kHz
upsampling studied using MUSHRA test reported in Sec. 4.2.

Table 2: Binary ’fake’/’real’ classifier accuracy (%) based on
MU-GAN discriminator embeddings. Columns correspond
to ADSR 4 → 16 kHz on VCTK, 16 → 48 kHz on VCTK,
16 → 48 kHz on FMA-small datasets.

Model VCTK 4→16 VCTK 16→48 FMA 16→48

AudioUnet 80% 95% 78%
MU-GAN 56% 83% 70%
HiFi-GAN – 93% –
FlowHigh – 85% 74%
FlashSR – 88% 66%

These results hold qualitatively for all models considered.
As shown in Table 2, the learned MU-GAN discrimina-
tor embeddings yield high accuracies (around 90%) for the
AudioUNet, FlashSR, and FlowHigh models on the VCTK
dataset, and slightly lower (around 70%–80%) for the FMA
dataset. At the same time, the log-Mel and OpenL3 embed-
dings achieve perfect classification accuracy (100%) across
all tasks and models considered.

5. CONCLUSIONS

This study highlights a gap between traditional signal met-
rics, perceptual quality, and the separability of real and super-
resolved audio distributions produced by generative ADSR
models. During stable GAN training, the discriminator accu-
racy converges to around 50%, yet its learned representations
can still distinguish ’real’ and ’fake’ audio in a supervised
benchmark, indicating that the GAN captures comprehensive
data features. Listener scores in the MUSHRA test closely
match the target wideband audio.

Classifiers trained on external embeddings, such as
OpenL3 or log-Mel spectrograms, achieve nearly perfect
separation between real and generated clips. This behavior
is consistent across domains, sampling rates (4 → 16 kHz
and 16 → 48 kHz), and extends to state-of-the-art diffusion
models [13, 14]. These results suggest that high perceptual
quality does not necessarily imply accurate distribution mod-
eling, revealing a persistent gap between perceptual realism
and representational fidelity—an open challenge for future
ADSR research.
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