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Sound events are proven to have an impact on the emotions of the listener. Recent works
on the field of emotion recognition from sound events show, on one hand, the possibility of
automatic emotional information retrieval from sound events and, on the other hand, the need
for deeper understanding of the significance of the sound events’ semantic content on listener’s
affective state. In this work we present a first, to the best of authors’ knowledge, investigation
of the relation between the semantic similarity of the sound events and the elicited emotion.
For that cause we use two emotionally annotated sound datasets and the Wu-Palmer semantic
similarity measure according to WordNet. Results indicate that the semantic content seems
to have a limited role in the conformation of the listener’s affective states. On the contrary,
when the semantic content is matched to specific areas in the Arousal-Valence space or also
the source’s spatial position is taken into account, it is exhibited that the importance of the
semantic content effect is higher, especially for the cases with medium to low valence and
medium to high arousal or when the sound source is at the lateral positions of the listener’s
head, respectively.

0 INTRODUCTION

Hearing and vision are the two mostly employed sensory
modalities for communication [1, 2]. Through the corre-
sponding communication channels, i.e., audio and visual,
we communicate with other people, express our thoughts
and ideas, entertain ourself and other persons, and perceive
knowledge for our surroundings and environs. Along with
these we also discern, transmit, and elicit emotions [3–5].
Focusing on sound, it is reported that there are three types of
audio stimuli: (i) speech, (ii) music, and (iii) non-verbal and
non-musical sounds termed as general sounds, everyday
sounds or sound events (e.g., environmental sound events
such as a car passing by, dog barking, etc.) [6–9]. For the
former two there is a well structured research background
and the corresponding scientific fields have to demonstrate
high achievements. For example, there are various pub-
lished works regarding speech and music related processing
and recognition tasks [10–12]. There is also an increased
interest on the emotion recognition from speech and mu-
sic. Various published works investigate the relation of the
aforementioned two types of audio stimuli with the elicited

motion on the listener [3, 13, 14]. But, speech and music
are the smaller portion of the total heard audio stimuli. The
bigger portion is occupied by general sounds, i.e., sound
events [4].

Emotion recognition from sound events is a recent field
of study with few produced results [15]. The existing pub-
lished works are focusing on the investigation for a system-
atic relation between the acoustic cues of the audio stimuli
and the conveyed emotion to the listener. However, the
technical characteristics (both signal/stimulus and source
related characteristics) are just one of the factors that can
affect the listener’s emotional state [1]. Specifically, the lis-
tener’s individuality (i.e., his personality, background, cul-
ture, past life, and others) and the semantic content of the
general sound can have an impact of the elicited emotion.

With respect to existing datasets, e.g., International Af-
fective Digitized Sounds (IADS) where each sound has
been rated by at least 100 people, the impact of the individ-
uality of each annotator is greatly decreased since the an-
notations are average across all annotators. The remaining
factors affecting elicited emotions are the technical char-
acteristics and the overall semantic content. The latter can
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be used to compute causal and semantic similarity, as has
been differentiated by existing works focusing on the sim-
ilarity of general sounds [16–18]. Briefly, causal similarity
refers to the actions that produce a sound, indicated by its
describing verbs, whereas semantic similarity refers to the
sound sources, indicated by the nouns describing the sound.

The impact of the semantic content of sound events to the
listener’s emotion has not been studied. In particular, ques-
tions like: “What is the importance of the semantic content
of a sound event with respect to the elicited emotion?”; “Do
sound events with similar semantic contents elicit similar
emotions?”; “Is it the knowledge that the clang is a gun,
or is it the technical characteristics of audio stimulus that
more strongly affect the listener?”; or “Does the semantic
content of a sound event have a more profound impact on
the elicited emotion than its actual acoustic cues?” are yet
to be answered.

The present work focuses on the impact of the seman-
tic content of sound events to the listener’s elicited emo-
tion. According to the above research questions, we present
a first approach towards investigating whether two sound
segments emerging from sources named with semantically
similar names, can elicit a similar emotion. More specifi-
cally, the work at hand examines the semantic similarity of
sound events that produce similar emotional states to the lis-
tener. We utilized two datasets with emotionally annotated
sound events. One without spatial information of the source,
i.e., the IADS [19], and the Binaural Emotionally Anno-
tated Digital Sounds (BEADS), which consists of binaural
rendered (i.e., with spatial information) versions of sound
events present in IADS [20]. Both of these datasets em-
ploy the widely adopted Arousal-Valence (AV) space with
clustering according to Self Assessment Manikin (SAM)
values [21]. The semantic similarity was measured by us-
ing the well established Wu-Palmer similarity measure [22].
The rest of the paper is organized as follows: in Section 1
we present a brief overview of the related works focused
on emotion modeling and annotation, emotion recognition
from sound events, and semantic similarity measurement
based on WordNet [23]. Section 2 presents the experimen-
tal procedure followed by the illustration of the obtained
results and their discussion in Section 3. Section 4 con-
cludes the paper and proposes future enhancements for the
current field of research.

1 RELATED WORK

What emotions exactly are is a question that is still de-
bated between experts in the relevant fields. Nevertheless,
emotions can be modeled by using two approaches: (i) dis-
crete, and (ii) continuous models [1]. The former category
includes models that use discrete verbal descriptions in
order to model emotions. The most typical representative
is the well known basic emotions model [24]. The latter
category includes models that approach emotion as the re-
sultant of N discrete affective dimensions with typically
N = 2, i.e., Arousal-Valence. The latter category seems to
be preferred in engineering related works as it provides a
reduced ambiguity on the annotated emotion. With the dis-
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Fig. 1. Scatter plot of the IADS AV annotations

crete emotions models there is a reported problem related
to the perceived or intended meaning of the employed word
(e.g., “Happiness” versus “Happy”), and the ability for later
mapping of values to clusters representing or assigned to
specific verbal descriptions of emotions [1, 14]. For emo-
tional annotations using a continuous model the SAM [21]
has been developed, with which a person can quantitatively
annotate his/her affective state. SAM consists of a series
of drawn manikins representing different values of corre-
sponding affective states and a set of intermediate values,
i.e., in between the figures. Altogether there are nine avail-
able choices for emotional annotation with one representing
the lowest value and nine the highest.

Another important aspect in the research centered on
emotional information retrieval from sound events is the
available datasets. Currently there are three freely emotion-
ally annotated datasets with sound events. In a chronolog-
ical order, the first one is IADS [19]. It consists of 167
sound events, emotionally annotated for arousal, valence,
and dominance and with content annotation, i.e., for all
sound events in the IADS dataset there is a string represen-
tation of the content, e.g., “dog,” “enginebreak,” “busysig-
nal,” etc. In Fig. 1 the scatter plot of the IADS annotations
in the AV space is illustrated. The second is the Emotional
Sound Database (ESD) [5]. It consists of 360 sound events,
emotionally annotated for arousal and valence and also with
content annotation. The third is the BEADS dataset [20]. It
consists of 32 sound events, binaural rendered for 5 angles
(i.e., 32 × 5 = 160 in total sound events), emotionally an-
notated for every angle, and also with content description.
BEADS is based on IADS and is the only existing emo-
tionally annotated sound events dataset containing audio
stimuli with spatial information.

Even though there are not many published works fo-
cusing on sound events emotion recognition [15], most of
them use AV and/or SAM and at least one of the available
datasets with emotionally annotated sound events. The AV
model is employed in [1, 15, 5, 25] and the SAM model is
employed in [19, 20, 4]. ESD is used in [15] and [5] and
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most of the other works employ IADS and/or BEADS. The
semantic content seems not to be tackled in many of the
existing works on the emotional information retrieval from
sound events, even if some of them mention its importance
in the resulting emotion recognition. For example, in [1]
the authors have presented a new approach to the acoustic
ecology by expanding it, i.e., affective acoustic ecology, and
re-defining the sound event in the scope of the emotionally
enhanced acoustic ecology. This new definition consists of
the semantic content along with the source’s spatial posi-
tion, the waveform, and the duration of the sound event.
In addition, in the same work it is stated that the seman-
tic content of the sound events might affect the arousal of
the listener, as indicated by the presented results. In [4]
the authors investigated the impact of sound source angular
position to the listener’s affective state. They discussed the
obtained affective state ratings according to spatial loca-
tion of the source and the expansion of the research on the
emotion recognition from sound events by also taking into
account the semantic content of the audio stimuli. Finally,
in [15] is presented a study on the common characteris-
tics of music, speech, and sound events and how these can
affect the emotions of the listener. The results indicated
that a cross-domain (i.e., for speech and/or music and/or
sound events) arousal and valence estimation is feasible,
but it is also hard, as the authors say, in terms of obtaining
a standard feature set that could achieve equally well in a
cross-domain scenario. Furthermore, the authors seem to
strengthen the need for semantic analysis of sound events
by bringing forward the fact that different kinds of general,
or natural, sounds were employed in speech and music for
expressive functions.

In order to measure the impact of the semantic con-
tent a framework that semantically connects and/or repre-
sents the notions/senses of words must be employed. One
such framework that is also widely adopted is WordNet
[23]. It was developed in order to provide a combination
of traditional lexicographic information with a computer
interface for automated or programmable access and pro-
cess of stored information. WordNet organizes words ap-
pearing in the English language in a hierarchy (tree-like)
structure where the higher nodes in the structure repre-
sent more abstract or general meanings/senses and deeper
nodes (or leaves) are more specific meanings/senses [26].
In addition, WordNet contains information for what part
of speech each word is, which is not necessarily unique.
For example, the word “back” can appear as noun or as
verb [23]. The ambiguity of the word’s meaning is re-
solved by a proper representation of the word. Thus, and
according to the previous example, the word “back” has
nine meanings as a noun, ten as a verb, three as an ad-
jective, and six as an adverb1. In the application program-
ming interface (API) of WordNet, the selection of a spe-
cific meaning is implemented by the following representa-
tion: < word > . < part o f speech > . < order >. So,

1 accessible at: http://wordnetweb.princeton.edu/perl/
webwn?s=back&sub=Search+WordNet&o2=&o0=1&o8=1
&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&h=.

if the second meaning of the word “back” as verb is needed
the correct representation in the API is “back.v.02.” The
precise word meaning obtained by the aforementioned pro-
cess will be called synset for the rest of the paper, following
the WordNet terminology.

On top of the WordNet structure, methods have been
developed in order to measure the semantic similarity.
These can abstractly be grouped in two classes: one that
uses path-based and another that uses information content-
based measures [27]. The former class of methods includes
those that use the distance and/or the path between two
synsets in the WordNet tree-like structure while on the
latter are those that use the information content (IC) for
each synset. The IC-based methods are heavily relying on
the corpora and the calculation of the IC [26, 27], a fact
that makes it possible to obtain different similarity measure
with different IC corpora. For that reason, in the present
study, we focused on the methods that use path-based
calculations.

Path-based similarity measures for WordNet are: (i)
Shortest path similarity, which takes into consideration
only the shortest path between two synsets and has a range
of values [0, 1], where 0 indicates no connection between
the two synsets and 1 the same synset/meaning; (ii) Wu-
Palmer’s similarity, which is a weighted distance measure
that takes into account the positions of the synsets and the
position of their most specific (i.e., deeper) common ances-
tor in the hierarchy and has a range of values (0, 1], with 1
indicating the same synset, and the lower the value the less
similar the synsets are; and (iii) Leacock-Chodorow simi-
larity, which is similar to (ii) but takes into consideration
the depth of the taxonomy into which the synsets are found
and has a range of values [0, 3.7).

We use the Wu-Palmer semantic similarity measure due
to: (i) having an already weighted value, and (ii) allow-
ing the calculation of semantic similarity of nouns and
verbs, according to the current implementation of the nltk
python package and Wu-Palmer function [28]. As data
we employed the synsets that correspond to the names of
sound events that are contained in the IADS and BEADS
datasets by manual selection of proper order for the synsets
in WordNet. We used both datasets in order to investi-
gate not only the semantic similarity with different af-
fective states but also any underlying relation of the se-
mantics and source’s spatial position. As different affective
states we considered all pairs from SAM’s manikin choices
and for the dimensions of AV (that are common in both
datasets).

2 FOLLOWED PROCEDURE

The followed procedure had three phases. The first one
regarded the creation of the synsets that would be utilized in
the semantic similarity measurement. The second consid-
ered the clustering of synsets according to emotion annota-
tion values, and the third was the actual semantic similarity
measurement. These phases are presented thoroughly in
this section.
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2.1 Creation of Synsets
As mentioned in Sec. 1, a synset consists of the word, its

part of speech, and the proper order in the WordNet struc-
ture. Both employed datasets provide a list of the content for
each sound event, i.e., a verbal description of the content in
each sound event. Based on that list, we manually selected
the proper order in the WordNet though its online search
engine2. Most of the words in the content descriptions were
nouns except the word “busy,” for the sound event from
IADS with content annotation of “busysignal.” Some con-
tent annotations in both datasets were single words, e.g.,
“dog,” “cat,” and some double words, e.g., “engine break”
written as “enginebreak.” The single words were trans-
formed to single synsets and the double words to a set of
two synsets. Therefore, if a word in the content descrip-
tion was apparent in the WordNet, then a single synset was
employed, while otherwise, two synsets were used. After
the creation of synsets, each sound event in each dataset
was described by its emotion annotation values, i.e., AV
values provided by the datasets, and a synset (if its con-
tent description was a single word) or a set of two synsets
(if its content description was a dual word). A full list of
employed synsets can be provided upon request.

2.2 Clustering of Synsets
We clustered the sound events based on the annotated

emotion values, provided by the utilized datasets. In partic-
ular, we investigate the semantic similarity of sound events
when the sound events are clustered according to their emo-
tional annotation values in interpretable clusters, i.e., clus-
ters that can be connected to either discrete emotions or
particular areas in the AV field (e.g., high or low arousal) or
choices from the emotion annotation tool that was employed
during the emotional annotation. Therefore, we employed
clusters of sound events that were formed by taking into
account the values of their emotional annotations and not
based on clustering algorithms.

For that reason five separate cases were considered, three
for the IADS dataset and two for the BEADS, in order to in-
vestigate the semantic similarity of sound events according
to different emotion-based clustering schemes. We first uti-
lized a simple binary emotion-based clustering scheme for
each separate affective dimension (case 1) and then we ex-
tended it by combining both affective dimensions (case 2).
Then, we employed a SAM-based clustering due to the ap-
parent relation that each SAM manikin has with the arousal
and valence values (case 3). The remaining two cases (cases
4 and 5) were focused on the BEADS dataset and examined
the semantic similarity of sound events when the latter are
emotionally clustered according to the different emotion
that they elicit when their source is moving towards the
back of the listener, as presented in the published works
related to BEADS dataset [4, 20].

In more detail, case 1 focused on investigating the se-
mantic similarity of the sound events that elicit high or low
values in each dimension, i.e., simulating a binary classi-

2http://wordnetweb.princeton.edu/perl/webwn.

Fig. 2. Clustering for case 3 with the corresponding SAM choices
and indices of areas in the AV space

fication of emotion for each affective dimension. We em-
ployed two clusters for each affective state dimension (i.e.,
arousal and valence). One of the clusters had the sound
events that were annotated with corresponding affective
state value below 5 and the other with the remaining ones.
This lead to two clusters for arousal and two for valence.

Case 2 was centered on examining the semantic similarity
of general sounds that are in each quadrant of the AV space
as can be seen in Fig. 1. This also lead to four clusters
in total, each one containing the sound events that were
annotated with values in the respective quadrant. Case 3
addressed the semantic similarity on AV space areas defined
by SAM’s values. An illustration of the resulting clustering
is given in Fig. 2 along with the indices for the areas/clusters
and the corresponding assignment of SAM values.

Case 4 focused on the semantic similarity between the
two classes as defined in [4]. These two classes correspond
to two different modes for the impact of spatial position
of the source to affective states. The first class contains
sound events that are rated with higher arousal and lower
valence as they move towards the back of the listener’s head,
and the second consists of sound events that are rated with
higher valence and lower arousal for the same movement of
source. Two clusters were formed, each containing sound
events belonging to the corresponding class, i.e., cluster 1
consisted of sound events appearing in class 1 and cluster 2
of sound events appeared in class 2. Finally, case 5 exam-
ined the semantic similarity of the sound events belonging
to each aforementioned class but also according to angular
transition, as employed in [4], where the class of each sound
event is specified as the source moves toward the back of
the listener’s head. This movement is examined in the range
of [0, 180] degrees and with a step of 45o. We clustered the
sound events for each angular transition of the source, i.e.,
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Whole 1(=) 2(=)
0.1
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Whole 1(=) 2(=)
0.1
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0.5

Fig. 3. The semantic similarity results for clustering case 1 in
both clusters of (a) valence and (b) arousal.

0 to 45 degrees, 45 to 90 degrees, and so on up to 135 to
180 degrees, according to the class that they belong.

2.3 Similarity Measurement and
Post-Processing

Semantic similarity was calculated for all synset pairs
within a cluster and by utilizing the Wu-Palmer measure
in conjunction with the matching similarity as described in
[29]. For measuring the whole dataset similarity, as a mea-
sure of reference, all the synsets were considered to com-
prise a single cluster. In cases of sound events described by
single synset only the Wu-Palmer measure was utilized. In
the cases of sound events having two synsets, the matching
similarity was employed [29]. In order to study the varia-
tions of the semantic similarity in each cluster, we averaged
the similarity of each synset, i.e., we utilized the mean sim-
ilarity of each synset with the others in the same cluster.
Obtained values are presented in the form of boxplots in
the next section.

3 RESULTS AND DISCUSSION

In all presented figures the semantic similarity for the
whole dataset is also depicted as an indication of reference.
Figs. 3 to 5 illustrate the obtained results for clustering
cases 1 to 3, respectively, while Figs. 6 and 7 depict the
semantic similarity results obtained for the clustering case
4 and 5, respectively. In these figures, statistical significance
computed with the Wilcoxon rank-sum test [30] for higher
and lower similarity values (compared to the similarity of
the whole dataset), is indicated with (+) and (–) respectively,
while statistically insignificant differences (compared to
whole dataset) are marked with (=).

Quadrant indices on Fig. 4 follow counter-clockwise in-
dexing, with number 1 assigned to the top-right quartile.
Non referred areas in Fig. 5 are due to the lack of data ac-
cording to Fig. 1. Angular transitions mentioned in Fig. 7
are according to [4].

Whole 1(+) 2(-) 3(=) 4(+)
0.1

0.3

0.5

Fig. 4. The semantic similarity results for case 2.

Whole 8(=) 9(-) 12(+) 13(=) 14(=) 16(+) 17(=) 18(+) 19(=)
0.1

0.3

0.5

Fig. 5. The semantic similarity results for case 3.

The discussion of the results will be on the following to
axis: (i) semantic similarity of sound events without spatial
information (i.e., by employing the IADS dataset), and ii)
semantic similarity combined with the spatial information
of the source (i.e. by using the BEADS dataset).

For the former case, a close inspection on Figs. 3 to 5
reveals that in general the clustering of the sound events ac-
cording to the elicited emotion does not exhibit a substantial
increase on the semantic similarity with some exceptions.
In particular, Fig. 3 shows that a clustering based on high
or low affective state value (i.e., above or below the mean
value of 5) does not have almost any result on the semantic
similarity of the sound events. This indicates clearly that for
classifying the emotional impact from sound events with the
specific scheme, i.e., binary classification corresponding to
high and low affective state values, the semantic content
seems to have an insignificant effect. A fact that seems to
be rather important since, on one hand, there are published
works that employ such a grouping of sound events based
on the arousal and valence annotations and, on the other, the
binary classification can be considered as a first approach
to the task of emotion recognition from sound events.

On the contrary, according to Figs. 4 and 5 there seems
to be an increased effect of the semantic content (i.e., in-
creased semantic similarity) to the elicited emotion as the
clustering becomes more fine grained, in terms of areas
on the AV space. But, again, in this case some of clusters
do not portray such a behavior. Specifically, Figs. 2 and
5 reveal that the highest values for semantic similarity are
observed for moderate to low valence and moderate to high
arousal values. This observation can be also of high impor-
tance since it is stated in [19] that it is highly unlikely for
one person to hear something that he does not like (low va-
lence) and at the same time not feel aroused (low arousal).
Additionally, valence seems to be considered as the most
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Whole 1(+) 2(+)
0.1

0.3

0.5

Fig. 6. The semantic similarity results for case 4.

Whole 1(+) 2(+) 3(+) 4(+)
0.1

0.3

0.5

Whole 1(+) 2(+) 3(+) 4(+)
0.1

0.3

0.5

Fig. 7 The semantic similarity results for clustering case 1 in both
clusters of (a) Class 1 and (b) Class 2.

difficult affective state to recognize [2], while with the pre-
sented results, the research focused on valence recognition
can be benefitted by also employing semantic information.
The p value obtained from Wilcoxon rank-sum test and for
areas with indices 9, 12, 16, and 18 in Fig. 5 was below
0.01.

Regarding the combination of spatial information with
semantic similarity, Figs. 6 and 7 show that, on one hand, the
grouping in classes according to [4] leads to sets of sound
events that exhibit higher semantic similarity in compar-
ison to the mean one in and, on the other hand, there is
an increased semantic similarity for the angular transitions
that correspond to exact lateral positions with respect to
the listener. For cases 4 and 5, all presented results had
a p value below 0.01. Specifically, in Fig. 7 can be seen
that for class 1, i.e., the sound events that elicit increased
arousal and decreased valence as the source moves toward
the side and the back of the listener, there is an almost dou-
ble semantic similarity for the angular transition of 45 to 90
degrees. Furthermore, the same effect can be observed for
class 2 and the angular transitions of 90 to 135 and 135 to
180 degrees. This aspect reveals that the sound events that
tend to affect the elicited emotion to the listener according
to the spatial location of their source tend to have semantic
similar descriptions, indicating that the semantic content of
sound events has an impact on the elicited emotion when
combined with realistic spatial representation of the source
(i.e., including the spatial information of the audio stimu-
lus).

4 CONCLUSIONS

This work presented a first investigation on the potential
impact of semantic content of sound events to the elicited
emotion on the listener. For this approach two types of
datasets were employed, one containing sound events with-
out any spatial information and another consisting of bin-
aural rendered sound events. Sound events were clustered
according to their affective state annotations and the seman-
tic similarity of the resulting clusters was measured by the
utilization of WordNet and semantic similarity measures.
Synsets used in the semantic similarity were created ac-
cording to the textual description of each file in the utlized
datasets. Results indicate that the semantic content has an
impact mostly on the valence dimension and especially on
mean to low valence values. In addition, the obtained results
depicted that sound events that seem to have a systematic
effect on the listener’s emotion exhibit also an increased
semantic similarity. This effect is more visible when the
source of the audio stimulus is moving on the lateral and
back areas of the listener’s head.

The findings of the work at hand could initiate the re-
search on the semantic similarity of sound events. Such re-
search could reveal significant findings regarding the con-
nection of sound events, their semantic content, and the
elicited emotions.
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