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Abstract

State-of-the-art methods for monaural singing voice separation
consist in estimating the magnitude spectrum of the voice in
the short-time Fourier transform (STFT) domain by means of
deep neural networks (DNNs). The resulting magnitude esti-
mate is then combined with the mixture’s phase to retrieve the
complex-valued STFT of the voice, which is further synthesized
into a time-domain signal. However, when the sources overlap
in time and frequency, the STFT phase of the voice differs from
the mixture’s phase, which results in interference and artifacts
in the estimated signals. In this paper, we investigate on recent
phase recovery algorithms that tackle this issue and can further
enhance the separation quality. These algorithms exploit phase
constraints that originate from a sinusoidal model or from con-
sistency, a property that is a direct consequence of the STFT
redundancy. Experiments conducted on real music songs show
that those algorithms are efficient for reducing interference in
the estimated voice compared to the baseline approach.
Index Terms: Monaural singing voice separation, phase recov-
ery, deep neural networks, MaD TwinNet, Wiener filtering

1. Introduction
Audio source separation [1] consists in extracting the underly-
ing sources that add up to form an observable audio mixture. In
particular, monaural singing voice separation aims at predicting
the singing voice from a single channel music mixture signal.
To address this issue, it is common to act on a time-frequency
(TF) representation of the data, such as the short-time Fourier
transform (STFT), since the structure of music is more promi-
nent in that domain.

A typical source separation work flow is depicted in Fig. 1.
First, from the complex-valued STFT of the mixture X, one
extract a nonnegative-valued representation Vx, such as a mag-
nitude or power spectrogram. Then, the magnitude (or power)
spectrum of the singing voice is predicted using e.g., nonneg-
ative matrix factorization (NMF) [2, 3], kernel additive mod-
els [4] or deep neural networks (DNNs) [5]. Finally, a phase re-
covery technique is used in order to retrieve the complex-valued
STFT of the singing voice.

Much research in audio has focused on the processing of
nonnegative-valued data. Phase recovery is usually performed
by combining the mixture’s phase with the estimated voice
spectrogram, or by means of a Wiener-like filter [3, 6]. Those
approaches result in assigning the mixture’s phase to the STFT
voice estimate. However, even if the latter leads to quite sat-
isfactory results in practice [2, 3], it has been pointed out that
when sources overlap in the TF domain, the assignment of the
mixture’s phase to the STFT voice estimate is responsible for
residual interference and artifacts in the separated signals [7].

Figure 1: A typical source separation system in the TF domain.

In the recent years, some efforts have been made to improve
phase recovery in audio source separation. Phase recovery al-
gorithms exploit phase constraints that originate from consis-
tency [8], a property of the STFT that arises from its redundant
signal representation, or from a signal model that approximates
time-domain signals as a sum of sinusoids [7]. The above men-
tioned phase constraints have been applied to a source separa-
tion task [9, 7] and combined with magnitude estimation tech-
niques in order to design full and phase-aware separation sys-
tems [10, 11]. However, these systems are based on variants of
NMF methods, which provides fairly good separation results in
scenarios where the sources are well represented with station-
ary spectral atoms (over time) and uniform temporal activations
(over frequencies).

In this paper, we propose to rather investigate on improved
phase recovery algorithms in DNN-based source separation. In-
deed, state-of-the-art results for source separation are obtained
with deep learning methods in both monaural [12, 13] and mul-
tichannel [14, 15] scenarios. This goes for the particular case
of monaural singing voice separation [16, 17, 18]. The most
recent approach, which is called MaD TwinNet [18], predicts
a voice magnitude spectrogram that is further combined with
the mixture’s phase. We propose to assess the potential of re-
cent phase recovery algorithms as alternative methods to this
baseline in order to enhance the separation quality. We test the
proposed techniques on realistic music songs used in the signal
separation evaluation campaign (SiSEC) [19], and we observe
that these algorithms are interesting alternatives to the baseline
since they allow to reduce interference at the cost of very few
additional artifacts.

The rest of this paper is structured as follows. Section 2
presents the MaD TwinNet system used for magnitude spectrum
prediction. Section 3 introduces the most recent phase recovery
algorithms. Experiments are conducted in Section 4, and Sec-
tion 5 draws some concluding remarks.

2. MaD TwinNet
The most up-to-date deep learning system for monaural singing
voice separation is the Masker Denoiser (MaD) architec-
ture with Twin Networks regularization (MaD TwinNet) [18].
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Figure 2: Illustration of the Mad TwinNet system (adapted
from [18]). With green color is the Masker, with magenta the
TwinNet, and with light brown the Denoiser.

Therefore, we will use it as a core system in our separation
framework. We briefly present its architecture hereafter, and
more details on it can be found in [17, 18].

MaD TwinNet consists of the Masker, the Denoiser, and
the TwinNet, and it is illustrated in Fig. 2. The Masker con-
sists of a bi-directional recurrent neural network (Bi-RNN), the
RNN encoder (RNNenc), an RNN decoder (RNNdec), a sparsi-
fying transform that is implemented by a feed-forward neural
network (FNN), with shared weights through time, followed
by a rectified linear unit (ReLU), and the skip-filtering connec-
tions [16]. The input to the Masker is a Vx and the output of the
skip-filtering connections is a first estimate of the singing voice
spectrogram denoted V̂′1. Prior to the encoding of Vx, a trim-
ming operation is applied to Vx. That operation preserves in-
formation only up to 8 kHz, and is used to decrease the amount
of trainable parameters of the Masker. Then, the RNNenc is used
to encode the temporal information of Vx, and its output is used
as an input to RNNdec, which produces the latent representation
of the target source TF mask. The latent representation is then
transformed to a TF mask by the sparsifying transform. The
output of the sparsifying transform along with the Vx, are used
as an input to a skip-filtering connection, which outputs V̂′1.

Since V̂′1 is expected to contain interference from other mu-
sic sources [16, 17], the Denoiser aims at further enhancing the
estimate of the Masker. A denoising filter is learned and ap-
plied to the estimate of the Masker, V̂′1. More specifically, V̂′1
is propagated to an encoding and a decoding stage. Each stage
is implemented by a FNN, with shared weights through time.
Each FNN is followed by a ReLU. Then, the output of the de-
coder and V̂′1 are used as an input to the skip-filtering connec-
tions. This yields the final voice magnitude estimate V̂1.

RNNs appear to be a suitable choice for modeling the long
term temporal patterns (e.g., melody and rhythm) that govern
music signals like the singing voice. However, such signals can
be dominated by local structures, shorter than the long temporal
patterns [18], making it harder to model the longer term struc-
ture. To deal with this issue, the authors in [20] proposed to

use the hidden states of a backward RNN for regularizing the
hidden states of a forward RNN. This regularization results in
enforcing the forward RNN to model longer temporal structures
and dependencies. The backward RNN, and the replication of
the process used to optimize the backward RNN, is called Twin
Network, or TwinNet.

More specifically, TwinNet is used in the MaD TwinNet ar-
chitecture [18] to regularize the output of RNNdec in the Masker.
Additionally to the forward RNN of the RNNdec and the subse-
quent sparsifying transform, the authors in [18] use the output
of the RNNenc as an input to a backward RNN, which is then
followed by a sparsifying transform. The backward RNN and
the associated sparsifying transform are used in the TwinNet
regularization scheme.

3. Phase recovery
3.1. Baseline approach

Once the voice magnitude spectrum V̂1 is estimated, the base-
line approach used in [18] consists in using the mixture’s phase
to retrieve the STFT of the voice:

Ŝ1 = V̂1 � e�i∠X, (1)

where � and .� respectively denote the element-wise matrix
multiplication and power, and ∠ denotes the complex argument.
Retrieving the complex-valued STFTs by using the mixture’s
phase is justified in TF bins where only one source is active.
Indeed, in such a scenario, the mixture is equal to the active
source. However, this is not the case in TF bins where sources
overlap, which is common in music signals. This motivates im-
proving phase recovery for addressing this issue.

3.2. Phase constraints

Improved phase recovery can be achieved by exploiting several
phase constraints, that either arise from a property of the STFT
or from the signal model itself.

3.2.1. Consistency

Consistency [8] is a direct consequence of the overlapping na-
ture of the STFT. Indeed, the STFT is usually computed with
overlapping analysis windows, which introduces dependencies
between adjacent time frames and frequency channels. Conse-
quently, not every complex-valued matrices Y ∈ CF×T are the
STFT of an actual time-domain signal. To measure this mis-
match, the authors in [8] proposed an objective function called
inconsistency defined as:

I(Y) = ||Y − G(Y)||2F , (2)

where G(Y) = STFT ◦ STFT−1(Y), STFT−1 denotes the in-
verse STFT and ||.||F is the Frobenius norm. It is illustrated
in Fig. 3. Minimizing this criterion results in computing a
complex-valued matrix that is as close as possible to the STFT
of a time signal. The authors in [21] proposed an iterative pro-
cedure, called the Griffin Lim algorithm, that updates the phase
of Y while its magnitude is kept equal to the target value. This
technique was used in the original MaD system [17] to retrieve
the phase of the singing voice, but it was later replaced in [18]
by simply using the mixture’s phase, since it was observed to
perform better.



Figure 3: Illustration of the concept of inconsistency.

3.2.2. Sinusoidal model

Alternatively, one can extract phase constraints from the sinu-
soidal model, which is widely used for representing audio sig-
nals [11, 22]. It can be shown [23] that the STFT phase µ of a
signal modeled as a sum of sinusoids in the time domain follows
the phase unwrapping (PU) equation:

µft ≈ µft−1 + 2πlνft, (3)

where l is the hop size of the STFT and νft is the normalized
frequency in channel f and time frame t. This relationship be-
tween adjacent TF bins ensures a form of temporal coherence of
the signal. It has been used in many audio applications, includ-
ing time stretching [23], speech enhancement [22] and source
separation [7, 11, 24].

3.3. Wiener filters

One way to incorporate those phase constraints in a separation
system is to apply a Wiener-like filter to the mixture. The clas-
sical Wiener filter [3] consists in multiplying the mixture by a
nonnegative-valued gain matrix (or mask):

Ŝj = Gj �X, (4)

where j ∈ {1, 2} is the source index, and the gain is:

Gj =
V̂�2
j

V̂�2
1 + V̂�2

2

, (5)

where the fraction bar denotes the element-wise matrix divi-
sion. Since this filter simply assigns the mixture’s phase to each
source, more sophisticated versions of it have been designed1:

• Consistent Wiener filtering [9] exploits the consistency
constraint (2) through a soft penalty that is added to a
cost function measuring the mixing error;

• Anisotropic Wiener filtering [24] builds on a probabilis-
tic model with non-uniform phases. This enables one to
favor a phase value that is given by (3);

• Consistent anisotropic Wiener filtering (CAW) [25] is
a combination of the previous approaches, where both
phase constraints can be accounted for.

For generality, we consider here the CAW filter. It depends on
two parameters κ and δ, which respectively promote anisotropy
(and therefore the phase model given by (3)) and consistency,
i.e., the constraint (2). CAW has been shown to perform better
than the other filters that use only one phase constraint [25].

1Due to space constraints, we cannot provide the mathematical
derivation of those filters, but the interested reader will find more tech-
nical details in the corresponding referenced papers.

Algorithm 1: PU-Iter

1 Inputs: Mixture X, magnitudes V̂j and frequencies νj
2 Compute gains Gj according to (5)
3 for t = 1 to T − 1 do
4 ∀j, f :
5 φj,ft = ∠ŝj,ft−1 + 2πlνj,ft
6 ŝj,ft = vj,fte

iφj,ft

7 for it = 1 to max iter do
8 yj,ft = ŝj,ft + gj,ft(xft −

∑
j ŝj,ft)

9 ŝj,ft = vj,ft
yj,ft

|yj,ft|

10 end
11 end
12 Output: Estimated sources Ŝj

3.4. Iterative procedure

Another phase retrieval algorithm has been introduced in [7].
This approach aims at minimizing the mixing error:

C(Ŝ) =
∑
ft

|xft −
∑
j

ŝj,ft|2, (6)

subject to |Ŝj | = V̂j ∀j. An iterative scheme is obtained by
using the auxiliary function method which provides updates on
ŝj,ft. In a nutshell, it consists in computing the mixing error
at one given iteration, distributing this error onto the estimated
sources, and then normalizing the obtained variables so that
their magnitude is equal to the target magnitude values V̂j (this
differs from Wiener filters where the masking process modifies
the target magnitude value).

The key idea of the algorithm is to initialize the phase of
the estimates Ŝj with the values provided by the sinusoidal
model (3). This results in a fast procedure (initial estimates
are expected to be close to a local minimum) and the output
estimates benefit from the temporal continuity property of the
sinusoidal phase model. This procedure, called PU-Iter, is sum-
marized in Algorithm 1. It does not exploit the consistency
constraint, but it was proven to perform better than consistent
Wiener filtering in scenarios where magnitude spectrograms are
reliably estimated [7].

4. Experimental evaluation
4.1. Setup

We consider 100 music songs from the Demixing Secrets
Database, a semi-professionally mixed set of music song used
for the SiSEC 2016 campaign [19]. The database is split into
two sets of 50 songs (training and test sets). Each song is made
up of J = 2 sources: the singing voice track and the musical ac-
companiment track. The signals are sampled at 44100 Hz and
the STFT is computed with a 46 ms long Hamming window,
with a padding factor of 2 and a hop size of 384 samples.

For the MaD TwinNet, we used the pre-trained parameters
that are available through the Zenodo on-line repository [26]
and correspond to the results presented in [18]. The frequen-
cies νj used for applying PU (3) are estimated by means of a
quadratic interpolated FFT (QIFFT) [27] on the log-spectra of
the magnitude estimates V̂j . PU-Iter uses 50 iterations, and the
CAW filter uses the same stopping criterion as in [9, 25] (i.e., a
relative error threshold of 10−6).



Figure 4: Separation performance (SDR, SIR and SAR in dB) of the CAW filtering for various phase parameters. Darker is better.

Table 1: Source separation performance (median SDR, SIR and
SAR in dB) for various phase recovery approaches.

SDR SIR SAR
Baseline 4.57 8.17 5.97
PU-Iter 4.52 8.87 5.52
CAW 4.46 10.32 4.97

Source separation quality is measured with the signal-to-
distortion, signal-to-interference, and signal-to-artifact ratios
(SDR, SIR, and SAR) [28] expressed in dB, which are com-
puted on sliding windows of 30 seconds with 15 second overlap.
These metrics are calculated using the mir eval toolbox [29].
Online are available a demo of the separated audio sequences2

as well as the code of this experimental study3.

4.2. Performance of the Wiener filters

We first investigate on the performance of the phase-aware ex-
tensions of Wiener filtering presented in Section 3.3. We ap-
ply CAW with variable anisotropy and consistency parameters
and we present the median results over the dataset in Fig. 4.
We observe that increasing κ leads to improve the distortion
metric and artifact rejection, but decreases the SIR. The value
κ = 0.01, for which the decrease in SIR is very limited, ap-
pears as a good compromise. On the other hand, increasing
the consistency weight δ overall increases the SIR and SAR,
but reduces the SDR (except for a high value of the anisotropy
parameter κ). In particular, δ = 0.1 slightly boosts the SIR
compared to δ = 0, without sacrificing the SDR too much.

Note that alternative values of the parameters reach differ-
ent compromises between those indicators. For instance, if the
main objective is the reduction of artifacts, one can choose a
higher value for κ. Conversely, if the goal is to reduce interfer-
ence, then it is suitable to pick a null value for the anisotropy
parameter combined with a moderate consistency weight. Fi-
nally, note that such filters actually use the power spectrograms
(not the magnitudes) to compute a mask (cf. (5)). Therefore,
better results could be reached by using a network that directly
outputs power spectrograms instead of magnitudes.

4.3. Comparison to the baseline

We now compare the baseline technique (cf. Section 3.1) with
PU-Iter and CAW using the parameters values obtained in the
previous experiment. Results are presented in Table 1. The best
results in terms of SDR and SAR are obtained with the baseline

2http://arg.cs.tut.fi/demo/phase-madtwinnet
3https://github.com/magronp/phase-madtwinnet

method, while the CAW filter yields the best results in terms of
interference reduction (an improvement of more than 2 dB com-
pared to the baseline). Nonetheless, those results must be nu-
anced by the fact that these drops in SDR and SAR are limited
(compared to the increase in SIR) when going from the base-
line to alternative phase recovery techniques. Indeed, PU-Iter
improves the SIR by 0.8 dB at the cost of a very limited drop in
SDR (−0.05 dB) and quite limited in SAR (−0.45 dB). CAW’s
drop in SDR and SAR is more important(−0.1 dB and−1 dB),
but it yields estimates with significantly less interference (+2
dB in SIR).

Consequently, we cannot argue that one method is better
than another, but rather that they yield different compromises
between the metrics. Thus, the phase recovery technique must
be chosen in conformity with the main objective of the separa-
tion. If the main goal is the suppression of artifacts then one
should use the baseline strategy. If one looks for stronger inter-
ference reduction, then CAW is a suitable choice. Finally, PU-
Iter is the appropriate choice for applications where the SAR
can be slightly sacrificed at the benefit of a 0.7 dB boost in SIR.

Note that in this work, we used the same STFT setting as
in [18] for simplicity. However, this is not optimal from a phase
recovery perspective. Indeed, the importance of consistency is
strongly dependent on the amount of overlap in the transform,
and the PU technique’s performance is highly impacted by the
time and frequency resolutions [7]. Consequently, the STFT
parameters (window size, zero-padding, overlap ratio) could be
more carefully tuned so one can exploit the full potential of
those phase recovery techniques.

5. Conclusions and future work

In this work, we addressed the problem of STFT phase recovery
in DNN-based audio source separation. Recent phase retrieval
algorithms yield estimates with less interference than the base-
line approach using the mixture’s phase, at the cost of limited
additional distortion and artifacts. Future work will focus on
alternative separation scenarios, where the phase recovery issue
is more substantial. Indeed, phase recovery has more poten-
tial when the sources are more strongly overlapping in the TF
domain, such as in harmonic/percussive source separation [30].
Another interesting research direction is the joint estimation of
magnitude and phase in a unified framework, rather than in a
two-stage approach. For instance, the Bayesian framework in-
troduced in [14] has a great potential for tackling this issue.
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