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ABSTRACT

Singing voice separation based on deep learning relies on the
usage of time-frequency masking. In many cases the mask-
ing process is not a learnable function or is not encapsulated
into the deep learning optimization. Consequently, most of
the existing methods rely on a post processing step using the
generalized Wiener filtering. This work proposes a method
that learns and optimizes (during training) a source-dependent
mask and does not need the aforementioned post processing
step. We introduce a recurrent inference algorithm, a sparse
transformation step to improve the mask generation process,
and a learned denoising filter. Obtained results show an in-
crease of 0.49 dB for the signal to distortion ratio and 0.30
dB for the signal to interference ratio, compared to previous
state-of-the-art approaches for monaural singing voice sepa-
ration.

Index Terms— Singing voice separation, recurrent en-
coder decoder, recurrent inference, skip-filtering connections

1. INTRODUCTION
The problem of music source separation has received a lot
attention in the fields of audio signal processing and deep
learning [1]. The most adopted solution is the estimation of a
time-varying and source-dependent filter, which is applied to
the mixture [2]. Performing the filtering operation is done by
treating audio signals as wide-sense stationary. This involves
transforming the mixture signal using the short-time Fourier
transform (STFT). Then, the source-dependent filtering op-
eration is applied to the complex-valued coefficients of the
mixture signal. More formally, let x be the time-domain mix-
ture signal vector of J sources. Y ∈ CM×N is the complex-
valued STFT representation of x, comprising of M overlap-
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ping time frames andN frequency sub-bands. The estimation
of the j-th target source (Ŷj ∈ CM×N ) is achieved through:

Ŷj = Y �Mj , (1)
where � is element-wise product and Mj ∈ RM×N≥0 is the j-
th source-dependent filter, henceforth denoted as mask. In [2]
was shown that a preferred way for estimating the j-th source
is to derive the mask through the generalized Wiener filtering
using α-power magnitude spectrograms as:

Mj =
|Ŷj |◦α∑
j

|Ŷj |◦α
, (2)

where, | · | and ◦ denote the entry-wise absolute and exponen-
tiation operators respectively, and α is an exponent chosen
based on the assumed distributions that the sources follow.
Finding α (and thus an optimal Mj for the source estimation
process [2]) is an open optimization problem [2, 3].

Deep learning methods for music source separation are
trained using synthetically created mixtures Y (adding sig-
nals Yj together, i.e., knowing the target decomposition).
They can be divided into two categories. In the first category,
the methods try to predict the mask directly from the mixture
magnitude spectrum [4] (i.e. f1 : |Y| →Mj). This requires
that an optimal Mj is given (e.g. all the non-linear mixing
parameters of the target source are known) during training as
a target. However, such information for the Mj is unknown,
and an approximation of Mj is computed from the training
data using Eq. (2) and empirically chosen α values, under
the hypothesis that the source magnitude spectra are additive,
which is not true for realistic audio signals [2, 3]. This im-
plies that such models are optimized to predict non-optimal
masks. The methods in the second category try to estimate all
sources from the mixture(i.e. f2 : |Y| → |Ŷj |◦α ∀ j ∈ J)
and then use these estimates to compute a mask [5, 6, 7, 8, 9].
This approach is widely adopted, since it is straightforward
by employing denoising autoencoders [10], with noise cor-
responding to the addition of other sources. However, the



masks are dependent on the initial α-power magnitude esti-
mates of the sources (|Ŷj |◦α), and the mask computation is
not a learned function. Instead, the mask computation uses
a deterministic function which takes as inputs the outcomes
(|Ŷj |◦α∀j ∈ J) of deep neural networks, e.g. as in [8].

An exception to the above are the works presented in [11]
and [12], where these methods jointly learned and optimized
the masking processes described by Eq. (1) and (2). In [11],
highway networks [13] were shown to be able to approximate
a masking process for monaural solo source separation and
in [12], a more robust alternative to [11] is presented. The
approach in [12] uses a recurrent encoder-decoder with skip-
filtering connections, which allow a source-dependent mask
generation process, applicable to monaural singing voice sep-
aration. However, the generated masks are not robust against
interferences from other music sources, thus requiring a post-
processing step using the generalized Wiener filtering [12].

In this work we present a method for source separa-
tion that learns to generate a source-dependent mask which
does not require the generalized Wiener filtering as a post-
processing step. To do so, we introduce a novel recurrent
inference algorithm inspired by [14] and a sparsifying trans-
form [15] for generating the mask Mj . The recurrent infer-
ence allows the proposed method to have a stochastic depth
of RNNs during the mask generation process, computing
hidden, latent representations which are presumably better
for generating the mask. The sparsifying transform is used
to approximate the mask using the output of the recurrent
inference. In this method the mask prediction is not based on
the above mentioned assumptions about the additivity of the
magnitude spectrogram of the sources, is part of an optimiza-
tion process, and is not based on a deterministic function.
Additionally, the method incorporates RNNs instead of feed-
forward or convolutional layers for the mask prediction. This
allows the method to exploit the memory of the RNNs (com-
pared to CNNs) and their efficiency for modeling longer time
dependencies of the input data. The rest of the paper is or-
ganized as follows: Section 2 presents the proposed method,
followed by Section 3 which provides information about the
followed experimental procedure. Section 4 presents the ob-
tained results from the experimental procedure and Section 5
concludes this work.

2. PROPOSED METHOD
Our proposed method takes as an input the time domain sam-
ples of the mixture, and outputs time domain samples of the
targeted source. The model consists of four parts. The first
part implements the analysis and pre-processing of the input.
The second part generates and applies a mask, thus creating
the first estimate of the magnitude spectrogram of the tar-
geted source. The third part enhances this estimate by learn-
ing and applying a denoising filter, and the fourth part con-
structs the time domain samples of the target source. We call
the second part the “Masker” and the third the “Denoiser”.
We differentiate between the Masker and the Denoiser be-

Fig. 1. Illustration of our proposed method.
cause the Masker is optimized to predict a time-frequency
mask, whereas the Denoiser enhances the result obtained by
time-frequency masking. We implement the Masker using a
single layer bi-directional RNN encoder (RNNenc), a single
layer RNN decoder (RNNdec), a feed-forward layer (FFN),
and skip-filtering connections between the magnitude spec-
trogram of the mixture and the output of the FFN. We imple-
ment the Denoiser using one FFN encoder (FFNenc), one FFN
decoder (FFNdec), and skip-filtering connections between the
input to the Denoiser and the output of the FFNdec. We jointly
train the Masker and the Denoiser using two criteria based
on the generalized Kullback-Leibler divergence (DKL), as
it is shown in [3, 16] to be a robust criterion for matching
magnitude spectrograms. All RNNs are gated recurrent units
(GRU). The proposed method is illustrated in Figure 1.

2.1. Input preprocessing
Let x be the vector containing the time-domain samples of a
monaural mixture from J sources, sampled at 44.1kHz. We
compute the STFT of x from time frames of N = 2049 sam-
ples, segmented with Hamming window and a hop size of 384
samples. Each time frame is zero-padded toN ′ = 4096. Sub-
sequent to the STFT we retain only the positive frequencies,
corresponding to the first N = 2049 frequency sub-bands.
This yields the complex-valued time-frequency representa-
tion of x, Y ∈ CM×N , and the corresponding magnitude
|Y| ∈ RM×N≥0 . We split |Y| in B = dM/T e subsequences,
with T being the length of the subsequence, and d·e is the
ceiling function. Each subsequence b overlaps with the pre-
ceding one by an empirical factor of L × 2, in order to use
some context information for the encoding stage. We use
each subsequence b in |Y|, denoted as |Yin| as an input to
the skip-filtering connections (presented later). Furthermore
we produce a low-bandwidth version of |Y|, which is used
for encoding, by preserving only the first F = 744 frequency
sub-bands at each frame yielding |Ytr| ∈ RT×F≥0 |Ytr|. This
operation retains information up to 8 kHz, in order to reduce
the number of trainable parameters but preserving the most
relevant information of the singing voice source.

2.2. The Masker
RNN encoder We use |Ytr| as an input to the RNNenc. The
forward GRU of the RNNenc takes |Ytr| as an input. The back-
ward one takes as an input the |

←−
Y tr| = [|ytrT |, . . . , |ytrt |, . . . ,



|ytr1 |], where |ytrt | ∈ RF≥0 is a vector in |Ytr| at time frame
t, and←− indicates the direction of the sequence. The outputs
from the Bi-GRU ht and

←−
h t are updated at each time frame

t using residual connections [17] and then concatenated as

henct =
[
(ht + |ytrt |)T, (

←−
h t +

←−
|y trt |)T]T. (3)

The output of the RNNenc for all t ∈ T is denoted as
Henc ∈ RT×(2×F ) and is followed by the context information
removal defined as:

H̃enc = [henc1+L
,henc2+L

, . . . ,hencT−L
], (4)

yielding H̃enc ∈ RT ′×(2×F ) for T ′ = T − (2× L). Residual
connections are used to ease the RNN training [17].

Recurrent inference and mask prediction Inspired by re-
cent optimization methods employing stochastic depth [14],
we propose a recurrent inference algorithm that processes the
latent variables of the RNNdec which affect the mask gener-
ation. We use this algorithm in order to employ a stochas-
tic depth for the network parts responsible for predicting the
mask, increasing the performance of our method. The recur-
rent inference is an iterative process and consists in reevalu-
ating the latent variables Hj

dec, produced by the RNNdec, until
a convergence criterion is reached, thus avoiding the need to
specify a fixed number of applications of the RNNdec. The
stopping criterion is a threshold on the mean-squared-error
(LMSE) between the consecutive estimates of Hj

dec, with a
LMSE threshold τterm. A maximum number of iterations (iter)
is used to avoid having infinite iterations for convergence be-
tween the above mentioned consecutive estimates. Hj

dec is
used only for the singing voice, i.e. j = 1. Let Gjdec be the
source-dependent and trainable function of the RNNdec. The
recurrent inference is performed using Algorithm 1. Hj

dec is

Algorithm 1. Recurrent Inference
1: Sj

0 ← G
j
dec(H̃enc)

2: for i ∈ {1, . . . , iter} do
3: Hj

dec ← G
j
dec(S

j
i−1)

4: if LMSE(S
j
i−1,H

j
dec) < τterm then

5: Terminate the process
6: Sj

i ← Hj
dec

return Hj
dec

then given to the FFN layer with shared weights through time
frames, in order to approximate the j-th source-dependent
mask as:

M̃j = ReLU(Hj
decWmask + bmask), (5)

where ReLU is the element-wise rectified linear unit function
producing a sparse [15] approximation of the target source
mask M̃j ∈ RT

′×N
≥0 . The sparsification is performed in or-

der to improve the interference reduction of [12]. The ReLU
function can produce high positive values inducing distortions
to the audio signal. However, the reconstruction loss (see Eq.
(9)) will alleviate that. Wmask ∈ R(2×F )×N is the weight ma-
trix of the FFN comprising a dimensionality expansion up to

N , in order to recover the original dimensionality of the data.
bmask ∈ RN is the corresponding bias term.

Skip filtering connections and first estimate of the targeted
source We obtain an estimate of the magnitude spectrum of
the target source |Ŷj

filt| ∈ RT
′×N
≥0 through the skip-filtering

connections as:

|Ŷj
filt| =|Ỹin| � M̃j , where (6)
|Yin| =[|yinL |, · · · , |yinT−L

|]. (7)

2.3. The Denoiser
The output of the Masker is likely to contain interferences
from other sources [12]. The Denoiser aims to learn a denois-
ing filter for enhancing the magnitude spectrogram estimated
by this masking procedure. This denoising filter is imple-
mented by an encoder-decoder architecture with the FFNenc
and FFNdec of Fig. 1. FFNenc and FFNdec have shared weights
through time frames. The final enhanced magnitude spectro-
gram estimate of the target source |Ŷj | is computed using

|Ŷj | = ReLU(ReLU(|Ŷj
filt|Wenc+benc)Wdec+bdec)�|Ŷj

filt|,
(8)

where Wenc ∈ RN×bN/2c and Wdec ∈ RbN/2c×N are the
weight matrices of the FFNenc and FFNdec, with the corre-
sponding biases benc ∈ RbN/2c, bdec ∈ RN , respectively. b·c
denotes the floor function.

2.4. Training details and post-processing
We train our method to minimize the objective consisting of
a reconstruction and a regularization part as:

L = DKL(|Yj | || |Ŷj |) + λrecDKL(|Yj | || |Ŷj
filt|)

+λmask|diag{Wmask}|1 + λdec||Wdec||22,
(9)

where |Yj | is the magnitude spectrogram of the true source,
diag{·} denotes the elements on the main diagonal of a ma-
trix, | · |1, and || · ||22 are the `1 vector norm and the squared
matrix L2 norm respectively, and λmask, and λdec are scalars.
For λrec the following condition applies:

λrec =


1, if DKL(|Yj | || |Ŷj

filt|) ≥ τrec

and DKL(|Yj | || |Ŷj |) ≥ τmin

0, otherwise
, (10)

where τrec and τmin are hyper-parameters penalizing the mask
generation process, allowing a collaborative minimization of
the overall objective. The usage of λrecDKL(|Yj | || |Ŷj

filt|)
will ensure that Mj can be used to initially estimate the target
source, which is then improved by employing the Denoiser
and DKL(|Yj | || |Ŷj |). The penalization of the elements
in the main diagonal of Wmask will ensure that the gener-
ated mask is not something trivial (e.g. a voice activity de-
tector), while the reconstruction losses using the DKL will
ensure that a source-dependent mask is generated, that min-
imizes the aforementioned distance. The squared matrix L2

norm is employed to improve the generalization of the model.



By processing each subsequence using the proposed
method, the estimates are concatenated together to form
|Ŷj | ∈ RM×N≥0 . For the singing voice we retrieve the
complex-valued STFT Ŷ j=1 by means of 10 iterations of the
Griffin-Lim algorithm (least squares error estimation from
modified STFT magnitude) [18] initialized with the mixture’s
phase and using |Ŷj |. The time-domain samples x̂j=1 are
obtained using inverse STFT.

3. EXPERIMENTAL PROCEDURE
We use the development subset of Demixing Secret Dataset
(DSD100)1 and the non-bleeding/non-instrumental stems of
MedleydB [19] for the training and validation of the proposed
method. The evaluation subset of DSD100 is used for testing
the objective performance of our method. For each multi-
track contained in the audio corpus, a monaural version of
each of the four sources is generated by averaging the two
available channels. For training, the true source |Yj | is the
outcome of the ideal ratio masking process [20], element-wise
multiplied by a factor of 2. This is performed to avoid the in-
consistencies in time delays and mixing gains between the
mixture signal and the singing voice (apparent in MedleydB
dataset). The length of the sequences is set to T = 60, mod-
eling approximately 0.5 seconds, and L = 10. The thresholds
for the minimization of Eq.(9) are τrec = 1.5 and τmin = 0.25
and the corresponding scalars are λmask = 1e−2, and λdec =
1e−4. The hidden to hidden matrices of all RNNs were ini-
tialized using orthogonal initialization [21] and all other ma-
trices using Glorot normal [22]. All parameters are jointly
optimized using the Adam algorithm [23], with a learning
rate of 1e−4, over batches of 16, an L2 based gradient norm
clipping equal to 0.5 and a total number of 100 epochs. All
of the reported parameters were chosen experimentally with
two random audio files drawn from the development subset of
DSD100. The implementation is based on PyTorch2.

We compared our method with other state-of-the-art ap-
proaches dealing with monaural singing voice separation,
following the standard metrics, namely signal to noise ra-
tio (SIR) and signal to distortion ratio (SDR) expressed in
dB, and the rules proposed in the music source separation
evaluation campaign [1] (e.g. using the proposed toolbox
for SIR and SDR calculation). The compared methods
are: i) GRA: Deep FFNs [4] for predicting both binary
and soft masks [20] which are then combined to provide
source estimates, ii) CHA: A convolutional encoder-decoder
for magnitude source estimation, without a trainable mask
approximation [6] iii) MIM-HW: Deep highway networks
for music source separation [11] approximating the filtering
process of Eq.(1), retrained using the development subset
of DSD100, and iv) MIM-DWF, MIM-DWF+: The two
GRU encoder-decoder models combined with generalized
Wiener filtering [12], trained on the development subset

1http://www.sisec17.audiolabs-erlangen.de
2http://pytorch.org/

Table 1. Median SDR and SIR values in dB for the investigated
approaches. Proposed approaches are underlined. Higher is better.

Method SDR SIR Method SDR SIR
GRA[4] -1.75 1.28 MIM-DWF+[12] 3.71 8.01
MIM-HW[11] 1.49 7.73 GRU-NRI 3.62 7.06
CHA[6] 1.59 5.20 GRU-RISs 3.41 8.32
MIM-DWF[12] 3.66 8.02 GRU-RISl 4.20 7.94

of DSD100 (MIM-GRUDWF) and the additional stems of
MedleydB (MIM-DWF+). The methods denoted as MIM-
HW, MIM-DWF, and MIM-DWF+ were re-implemented
for the purposes of this work. For the rest of the methods
we used their reported evaluation results obtained from [1].
Our proposed methods are denoted as GRU-NRI, which
does not include the recurrent inference algorithm, and two
methods using different hyper-parameters for the recurrent
inference algorithm: GRU-RISs, parametrized using a max-
imum number of iterations iter = 3, and τterm = 1e−2, and
GRU-RISl parametrized using a maximum number of iter-
ations iter = 10 and τterm = 1e−3, which where selected
according to their performance in minimizing Eq. (9).

4. RESULTS & DISCUSSION
Table 1 summarizes the results of the objective evaluation
for the aforementioned methods by showing the median
values obtained from the SDR and SIR metrics. The pro-
posed method based on recurrent inference and sparsify-
ing transform is able to provide state-of-the-art results for
monaural singing voice separation, without the necessity of
post-processing steps such as generalized Wiener filtering,
and/or additionally trained deep neural networks. Compared
to methods that approximate the masking processes (GRA,
MIM-HW, MIM-DWF, and MIM-DWF+) there are signif-
icant improvements in overall median performance of both
the SDR and SIR metrics, especially when the masks are not
a learned function, such as in the case of CHA. Using the
proposed method, a gain of 0.49 dB for the SDR is observed
between MIM-DWF+ and GRU-RISl and 0.30 dB for the SIR
between the MIM-DWF and GRU-RISs. Finally, by allowing
a larger number of iterations during the recursive inference
the mask generation performance and using skip-filtering
connections we see an increase in SDR which outperforms
the previous methods MIM-DWF and MIM-DWF+, but at the
cost of a loss in SIR. A demo for the proposed method is avail-
able at https://js-mim.github.io/mss_pytorch/.

5. CONCLUSION
In this work we presented an approach for singing voice sepa-
ration that does not require post-processing using generalized
Wiener filtering. We introduced to the skip-filtering connec-
tions [12] a sparsifying transform yielding comparable results
to approaches that rely on generalized Wiener filtering. Fur-
thermore, the introduced recurrent inference algorithm was
shown to provide state-of-the-art results in monaural singing
voice separation. Experimental results show that these exten-
sions outperform previous deep learning based approaches for
singing voice separation.

http://www.sisec17.audiolabs-erlangen.de
http://pytorch.org/
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“Monoaural audio source separation using deep convo-
lutional neural networks,” in Latent Variable Analysis
and Signal Separation: 13th International Conference,
LVA/ICA 2017, 2017, pp. 258–266.

[7] N. Takahashi and Y. Mitsufuji, “Multi-scale multi-band
densenets for audio source separation,” in 2017 IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics (WASPAA 2017), Oct 2017.

[8] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and
P. Smaragdis, “Joint optimization of masks and deep
recurrent neural networks for monaural source separa-
tion,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 23, no. 12, pp. 2136–2147,
Dec 2015.

[9] A.-A. Nugraha, A. Liutkus, and E. Vincent, “Multi-
channel music separation with deep neural networks,”
in 24th European Signal Processing Conference (EU-
SIPCO), Aug 2016, pp. 1748–1752.

[10] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “General-
ized denoising auto-encoders as generative models,” in
Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds., pp. 899–907. Curran Asso-
ciates, Inc., 2013.

[11] S.-I. Mimilakis, E. Cano, J. Abeßer, and G. Schuller,
“New sonorities for jazz recordings: Separation and

mixing using deep neural networks,” in Audio Engi-
neering Society 2nd Workshop on Intelligent Music Pro-
duction, 2016.

[12] S.-I. Mimilakis, K. Drossos, G. Schuller, and T. Virta-
nen, “A recurrent encoder-decoder approach with skip-
filtering connections for monaural singing voice sepa-
ration,” in 2017 IEEE 27th International Workshop on
Machine Learning for Signal Processing (MLSP), 2017.

[13] R.-K. Srivastava, K. Greff, and J. Schmidhuber, “High-
way networks,” CoRR, vol. abs/1505.00387, 2015.

[14] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Wein-
berger, “Deep networks with stochastic depth,” CoRR,
vol. abs/1603.09382, 2016.

[15] V. Papyan, Y. Romano, and M. Elad, “Convolutional
neural networks analyzed via convolutional sparse cod-
ing,” Journal of Machine Learning Research, vol. 18,
no. 83, pp. 1–52, 2017.

[16] A. Liutkus, D. Fitzgerald, and R. Badeau, “Cauchy
nonnegative matrix factorization,” in 2015 IEEE Work-
shop on Applications of Signal Processing to Audio and
Acoustics (WASPAA 2015), Oct 2015, pp. 1–5.

[17] Y. Wu et al, “Google’s neural machine translation sys-
tem: Bridging the gap between human and machine
translation,” CoRR, vol. abs/1609.08144, 2016.

[18] D. Griffin and J. Lim, “Signal estimation from modified
short-time Fourier transform,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 32, no.
2, pp. 236–243, Apr 1984.

[19] R. M. Bittner, J. Salamon, M. Tierney, M. Mauch,
C. Cannam, and J. P. Bello, “Medleydb: A multitrack
dataset for annotation-intensive MIR research,” in 15th
International Society for Music Information Retrieval
(ISMIR), Oct 2014, pp. 66–70.

[20] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux,
“Phase-sensitive and recognition-boosted speech sepa-
ration using deep recurrent neural networks,” in 40th In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP 2015), April 2015, pp. 708–712.

[21] A.-M. Saxe, J.-L. McClelland, and S. Ganguli, “Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks,” CoRR, vol. abs/1312.6120,
2013.

[22] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in In
Proceedings of the International Conference on Artifi-
cial Intelligence and Statistics (AISTATS’10), 2010, pp.
249–256.

[23] D.-P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” CoRR, vol. abs/1412.6980, 2014.


	 Introduction
	 Proposed Method
	 Input preprocessing
	 The Masker
	 The Denoiser
	 Training details and post-processing

	 Experimental Procedure
	 Results & Discussion
	 Conclusion
	 References

