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ABSTRACT

The objective of deep learning methods based on encoder-
decoder architectures for music source separation is to ap-
proximate either ideal time-frequency masks or spectral rep-
resentations of the target music source(s). The spectral rep-
resentations are then used to derive time-frequency masks.
In this work we introduce a method to directly learn time-
frequency masks from an observed mixture magnitude spec-
trum. We employ recurrent neural networks and train them
using prior knowledge only for the magnitude spectrum of
the target source. To assess the performance of the proposed
method, we focus on the task of singing voice separation. The
results from an objective evaluation show that our proposed
method provides comparable results to deep learning based
methods which operate over complicated signal representa-
tions. Compared to previous methods that approximate time-
frequency masks, our method has increased performance of
signal to distortion ratio by an average of 3.8 dB.

Index Terms— Music source separation, deep learning,
denoising autoencoders

1. INTRODUCTION

The under-determined separation of audio and music signals
from mixtures is an active research area in the field of au-
dio signal processing. The main objective is to estimate in-
dividual sources contained in an observed single-channel (i.e.
monaural) mixture. An important task which has attracted a
lot of attention is the estimation of singing voice and back-
ground music [1]. The most widely-used strategy to achieve
the estimation of individual sources employs time-varying fil-
ters, usually in the short-time Fourier transform (STFT) do-
main. These filters, henceforth denoted as time-frequency
masks, are derived from rational models which incorporate
prior information about the spectral representation of each
source in the mixture [2, 3].
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When sources are already known (i.e. informed source
separation) [4], the process of source separation is almost triv-
ial by employing an optimal time-frequency masking strat-
egy [2]. On the other hand, when the sources are not known, a
prior estimation of each individual source takes place. To that
aim, numerous approaches have been proposed. More specif-
ically, in [5] it is proposed to exploit phase information for
separating sources that have harmonic and impulsive charac-
teristics, while in [6] the repetitive structure of music sources
is studied for separating singing voice and background music.
Alternative methods approximate the mixture magnitude via
non-negative low rank modeling [7, 8], and/or matrix comple-
tion via robust principal component analysis (RPCA) [9].

Studies in music source separation have shown that super-
vised methods based on deep learning can yield state-of-the-
art results in singing voice separation [1]. Such methods can
be roughly discriminated into two main categories. In the first
category the goal is to train deep neural networks, to approxi-
mate an ideal time-frequency mask from observed magnitude
spectral representations [10, 11, 12]. The second category ex-
ploits denoising auto-encoders (i.e. neural networks trained to
map from a noisy observation to a clean one), with the main
goal of estimating the magnitude spectral representation of
individual music sources from input mixtures [13, 14, 15].
Then, these estimates are combined to derive [13, 15, 16] or
optimize [14, 17] a time-frequency mask that filters the input
mixture. However, the quality of the time-frequency mask is
heavily depended on the computation of the sources [14, 16]
and the time-frequency mask approximation is not part of the
optimization process (only the estimation of the sources is).

An exception to the latter is the work in [14]. In that work,
in order to predict the time-frequency mask the sources are
first predicted and then combined in a generalized Wiener fil-
tering process. Although, and according to [14], the approxi-
mation of the time-frequency mask is subject to optimization,
this optimization is based on the ability of the previous neural
network layers to estimate the sources.



In this work we propose a method for predicting a time-
frequency mask from the observed mixture magnitude spec-
trogram, and optimizing it according to its performance on
estimating the target source. During training, the only prior
knowledge is the mixture and the target source magnitude
spectrograms. After training, only the mixture magnitude
spectrogram is required. This approach differs from the ex-
isting ones because: a) we do not base the prediction of the
time-frequency mask on the prior estimation of the source(s),
and b) we do not require a prior knowledge of the ideal
time-frequency mask for training. We let a recurrent neural
network (RNN) to predict the time-frequency mask. Then,
based on that time-frequency mask, we estimate the mag-
nitude spectrogram of the target source using skip-filtering
connections, a highway network, and a generalized Wiener
filtering process. The RNN and the highway network are
jointly trained.

The rest of the paper is organized as follows: Section 2
presents the proposed method, followed by Section 3 which
provides information about the training and evaluation of the
proposed method. Section 4 presents the obtained results
from the experimental procedure, followed by discussion.
Conclusions are in Section 5.

2. PROPOSED METHOD

Our method accepts as an input the time-domain samples of
a monaural mixture vector x and produces the time-domain
samples of the j-th target source vector $7, as illustrated
in Fig. 1. We calculate the matrix Y, which contains the
complex-valued time-frequency representation of x. In order
to use short sequences of frames with context information (i.e.
previous and next frames), we create the tensor Y, consisting
of overlapping segments of the magnitude of Y. We use each
matrix in Yj, as an input to a single-layered, bi-directional
gated recurrent unit (BiGRU), the encoder, in order to let our
method learn temporal inter-dependencies of the input data.
The output of the encoder is used as an input to a single lay-
ered GRU, the decoder, in order to estimate a time-frequency
mask. We combine the estimated time-frequency mask and
the input to the encoder using skip-filtering connections, in
order to estimate the magnitude spectrogram of the target
source, Y7,. The encoder and the decoder are optimized
by minimizing the generalized Kullback-Leibler divergence,
L1, between the true and the estimated magnitude spectro-
gram of thf_: target source.

The Y}, is used as an input to a highway network in order
to reduce the interferences from the rest sources. The encoder,
the decoder, and the highway network are optimized using
L1 between the true magnitude spectrogram of the target
source and the output of the highway network, plus an L,
regularization term. The output of the highway network with
the complex-valued mixture representation, Y, are given as
an input to a generalized Wiener filtering process. The latter
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Fig. 1. Illustration of the proposed encoder-decoder approach
with skip-filter connections.

produces the complex-valued time-frequency representation
of the target source and further reduces the interferences from
the rest sources. The final output, yi , is calculated through an
overlap and add synthesis procedure [18].

2.1. Input processing

Vector x is sliced in M overlapping time frames of length N,
using a shift’/hop-size of H samples. The overlapping time
frames are element-wise multiplied by the Hamming window-
ing function. This yields a matrix of overlapping segments of
the original mixture, from which the complex-valued time-
frequency representation Y € CM*N is acquired by apply-
ing the short-time Fourier (STFT) analysis for all M time
segments. From the STFT representation of the mixture Y,
we compute the magnitude spectrum |Y|, with | - | denot-
ing the element-wise magnitude of the matrix. Using a slid-
ing window over the time-frames of |'Y| we form the tensor
Y € RET*N where B = [M/T] and T is an integer
indicating the amount of STFT time-frames used for encod-
ing. Y, consists of a B number of matrices that encompass
T x N segments of the mixture magnitude spectrogram |Y|.
Each matrix Y;,, € Rng is a sequence of 7' overlapping
time-frames, and is acquired from |Y]| as

Yin, = [|[Ym+1ls- - [Ym 4[], where (1)
m =0b-1)xT—-(b-1)x2xL, )

and L and m' are integers indicating the amount of time-
frames that will be used as context information, and the time-
frame location in Y| (|y..|), respectively. In the case that
m’ > M, |ym| is a vector of zeros and of length N. The
usage of overlapping time-frames is interpreted as having 2 x
L context frames (L before and L after) for T — (2 x L)
length sequence of time-frames and is necessary for the sub-
sampling operation, imposed by the decoding part of our pro-
posed method. The term 2 x L is derived experimentally.




2.2. Mask and source estimation

Each Yj,, is used as an input to the BiGRU encoder, which
processes it according to the equations describing a GRU and
using the proposed non-linearities [19]. The BiGRU encoder
consists of two GRUs, the forward GRU which acce%ts Yin,

as an input, and the backward one which accepts Y;,, =
Ying.zs > Ying.e - - - » Yiny 1 |» Where yin, , € RY is a vector
in Yj,, at time-step ¢, and < denotes the direction of recur-
sion over the time sequences. The hidden outputs from the

bi-directional encoder at time-step ¢, h; and h, are concate-
nated and updated using residual connections [20], as

hene, = [(hy + Ying )T 0y + Fin )T )

and the output of the encoder is

Henc = [hencla LR henct; ceey hencT]- (4)

H., is used as an input to the decoder, producing an output
denoted as H,.. The subscripts “enc” and “dec” stand for
encoder and decoder, respectively. The superscript j signifies
that the values of the matrix are dependent on the j-th source.
The concatenation imposed by Eq. (3) increases the dimen-
sionality of the encoded information by a factor of two (Hey
is of shape T x (IN x 2)). For this reason the decoder utilizes
dimensionality reduction, such the Hjec matches the dimen-
sionality of Yj,, . Furthermore, a sub-sampling operation over

the time-steps of H’ s applied, defined as

dec

H‘(jiec = [hg]ecl+L ’ hglecQ+L’ ctt h(jiecT_L]? (5)
where L in Eq. (5) indicates the amount of time steps to be
discarded from the start and end of H... The intuition be-
hind Eq. (5) is to allow the flow of information from pre-
vious and preceding context frames L, without dramatically
increasing the learning complexity of longer time interdepen-
dencies [21]. After the sub-sampling operation, we apply the
skip-filtering connections between IjIglec and a sub-sampled
version of the input data ?mb as

|, where 6)

dec

Yéltb :Yinb © |H'7
Yinb :[Yinb,Lv "'7yinb,T,L]9 (7)

® is the Hadamard product, ICI{j‘ec is interpreted as a time-
frequency mask specific to the source j, and ?inb is the
sub-sampled version of Yj,, . According to Eq. (6), ngb can
be considered as a filtered version of the input sequence Ymb
approximating the magnitude spectrogram of the j-th target
source, and thus the subscript “filt”. The skip-filtering con-
nections directly filter the input mixture magnitude sequence
by the output of the decoder. The motivation behind this is
to enforce I:Ifjec to be a time-frequency mask derived through
optimization, based on the prior knowledge of the magnitude
spectrogram of the target source and not on the prior knowl-

edge of an ideal time-frequency mask. The skip-filtering

connections are inspired by the denoising source separation
framework presented in [22]. We minimize the L ;, between
the true and estimated magnitude spectrogram of the j-th
target source to train the encoder and the decoder.

2.3. Enhancement of estimated magnitude spectrogram

In order to enhance the outcome of the filtering process of
Eq. (6) [15], thb is used as an input to a single layer of
highway neural networks [23], with shared weights in time,
as

Y{| = oY}, W' +b") @ g(Y], W +b")+

. . 8

Yéltb ©1- J(Ygltb W btr))’ ®
where |Y;J | is the enhanced estimated magnitude spectro-
gram of the j-th target source [15], o is the sigmoid func-
tion, g is defined as g(x) = max(0,x), and W*" and W"
are the weight matrices of the transformation and gating op-
erations with their corresponding bias vectors b" and bt",
respectively. All the layers are trained by minimizing the
L 1, between the true and the enhanced estimated magnitude
spectrogram of the j-th target source, plus an additional Lo
penalty, for regularizing \YA'IIJJ , scaled by A = le~*. Given
that L, penalty is higher for non pseudo-periodic informa-
tion [9], we use it in order to enforce the highway network to
enhance the estimated magnitude spectrogram of the singing
voice.

2.4. Final output and implementation details

We iterate through all the above presented equations for all b
in Yi,, and the result is the tensor [Y"7/| € REXT >N where

T' =T —2x L. Then, |Y"7| is reshaped to | Y, | € RM*N,
by reversing the process in Eq. (1) and (2). The subscript
“flat” is used to refer to the aforementioned reshaping proce-
dure. The final output of the proposed method is the complex-
valued spectral representation of the j-th source YJ e CMxN

computed as

Y7/ =M/ ©Y, where 9)
) Y’j o
i — Dl® Yo (10)

a € (0, 2] is an exponent applied element-wise, signifying the
statistical assumption(s) about the sources and their additive
property in the magnitude time-frequency domain [2]. Fur-
thermore, the division is also performed element-wise. The
reasoning behind Egs. (9)—(10) and the « factor, is to infer the
information that the mixture encapsulates about the phase and
the magnitude of the target source, practically improving the
interference reduction from other concurrently active sources.
The reconstruction of the time-domain function of the target
source §7 is achieved by the DFT synthesis operation, fol-
lowed by the overlap and add method presented in [18].



The highway network and the GRUs in the encoder con-
sist of 1025 neurons each and the GRU in the decoder has
2050 neurons. This results in approximately 24 million pa-
rameters in total for our method. All weight matrices are
randomly initialized using the method presented in [24] and
jointly trained using the adam algorithm [25], with a learning
rate of le~2, over b batches of 16, and an L based gradi-
ent norm clipping equal to 0.35. The training is terminated
if after two consecutive iterations over all the available train-
ing batches, no minimization took place. The implementa-
tion of the proposed method is based on the keras [26] and
Theano [27] frameworks. The above parameters are chosen
experimentally by informal listening tests and subjectively
evaluating the obtained quality of separation, with data drawn
from the development subset of DSD100 (presented in the
next section).

3. EVALUATION

3.1. Dataset and preprocessing

In order to assess the performance of the proposed method
we focus on the task of singing voice and background mu-
sic separation. The Demixing Secret Dataset (DSD100)! is
used for training and evaluating our approach. DSD100 con-
sists of 100 professionally produced multi-tracks of various
music genres, sampled at 44.1kHz. The dataset is by default
divided evenly into development and evaluation subsets, each
consisting of 50 multi-tracks, and each multi-track contains
four stereo target sources forming the produced mixture.

For each multi-track contained in the development sub-
set, a monaural version of each of the four sources is gen-
erated by averaging the two available channels. Afterwards,
two signals are generated. One containing the corresponding
monaural mixture of all the monaural sources (singing voice,
bass, drums, etc) and a second containing the mixture of all
the monaural sources but the singing voice. The mixing gain
values for each source are not modified (no data augmentation
is applied). An analysis operation using the STFT is applied
to the two preceding mixture signals and the target singing
voice, using H = 256 and N’ = 2048. Since we are con-
cerned with real-valued signals, their time-frequency repre-
sentation using the DFT is Hermitian and thus the redundant
information is discarded, resulting into a dimensionality of
N = 1025. The length of the sequences is set to 7' = 18,
modeling approximately 120 ms, and L = 3. To avoid in-
consistencies due to the sub-sampling operation of Eq. (5),
the considered shifts for acquiring Yj, are overlapping by six
time-frames (2 x L). During training, the true source |Y/|
is the outcome of a generalized Wiener filtering using the a
priori knowledge from the dataset for each source and a value
ofa=1.

'http://www.sisecl7.audiolabs-erlangen.de

3.2. Metrics and evaluation procedure

To evaluate our method we use the standard metrics employed
in the music source separation evaluation campaign [1].
These are the signal to distortion ratio (SDR) and the sig-
nal to interference ratio (SIR). These metrics are computed
by using the output of the proposed method on the evaluation
sub-set and the true sources acquired from the multi-tracks of
the same sub-set. Results from three different strategies using
the proposed method are reported. For the first one, we train
our method using the magnitude spectrogram of the singing
voice |[Y7=1|. After the training, we obtain an estimation of
the singing voice using the input mixture spectrogram and
an « value equal to 1.7, as according to Eq. (9) and (10).
For the rest two strategies, we use two deep neural networks
trained separately. Both of them are based on our method.
One to predict the singing voice [Y7=!| and another to pre-
dict the background music without the singing voice |Y7=2|.
The predicted magnitude spectral estimates (i.e. |3?j =!| and
|Yj:2\) are used in the Eq. (10) and the Eq. (9) to compute
the final estimation of the | Y7=!|. In Eq. (10), the numerator
is defined as [Y7=!|® and we replace the [Y|* of the de-
nominator with | Y |* = [¥7=2|® 4 |¥7=1|*, For the second
strategy we use « = 1.7 and for the third = 2. We will
refer to these three strategies as GRU-S (the first), GRU-D
(the second), and GRU-DWEF (the third). The values for «
are chosen according to the generalized Wiener filtering (i.e.
«a = 2) and its extension to heavy-tailed distributions [2].

We compare with state-of-the-art methods dealing with
monaural singing voice separation. More specifically, we
compare the results from our proposed method against: 1)
two approaches based on deep feed-forward neural networks
of approximately 17 million parameters each, trained us-
ing data augmentation to predict both binary and soft time-
frequency masks derived from [3], denoted as GRA2 and
GRA3 [10] ii) a convolutional based encoder-decoder ap-
proach with approximately 27 million parameters, trained
using data augmentation to predict a soft time-frequency
mask, denoted as CHA [12], and iii) two additional deep
denoising auto-encoders operating on the common fate signal
representation [28] denoted as STO1, STO2. As for the ora-
cle estimation, the results from ideal binary masking (IBM)
are also presented. We report results for the overall perfor-
mance on the employed dataset and for three clusters of music
genres, namely Jazz/Pop/Rock, Electronic/Rap, and Heavy
Metal.

4. RESULTS & DISCUSSION

Results from the SDR and SIR metrics for the above meth-
ods and the oracle estimation are illustrated in Figures 2
and 3. Examining the differences in SDR and SIR metrics
between the methods are trained to approximate the ideal
time-frequency masks (GRA3, CHA) and GRU-D, it can be
observed that the median SDR has been improved by approx-
imately 5.4 dB when compared to GRA3 and by 2.1 dB when
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Fig. 2. Analysis of variance of SDR for previous approaches
and the proposed ones. Red lines denote the median values.
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Fig. 3. Analysis of variance of SIR for previous approaches
and the proposed ones. Red lines denote the median values.

compared to CHA. An average improvement of 3.5 dB for
the SIR can be observed regarding the methods that predict of
the time-frequency mask (GRA2, GRA3, CHA). On the other
hand, when it comes to comparison with common denoising
auto-encoders (STO1, STO2) and our method, a marginal
average loss of 0.3 dB in the median SDR and a gain of 0.25
dB and 0.9 dB in the median SIR can be observed accord-
ing to the results over the GRU-D and GRU-DWF cases,
respectively. We believe (but we don’t have any evidence)
that these marginal differences can be attributed to the more
sophisticated signal representations, such as the common fate
model [28], used in STO1, STO2. In contrast, our method
operates on top of a magnitude spectral representation com-
puted from a STFT. By inspecting the differences between
the proposed strategies GRU-S and GRU-D, it can be seen
that SDR can be increased by approximately 0.9 dB by in-
corporating separate deep neural networks for approximating
additional sources contained in mixtures. On the other hand,
dramatic differences in SIR between the three strategies were
not observed, unless the value for ¢ was increased, like in
the case of GRU-DWF. This shows, that combining mul-
tiple deep neural networks in generalized Wiener filtering
leads to improved SDR. Additionally, the additivity property,
acknowledged in generalized Wiener filtering [2], of the esti-
mates of deep neural networks might not hold true without an
explicit cost objective. Nonetheless, it can used for improv-

10 Average SDR and SIR over Music Genres
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Fig. 4. Average objective performance of the three presented
strategies over three clusters of music genres.

ing the interference reduction. In Figure 4 are the average
SDR and SIR measures of the three employed strategies over
the three employed music genres. As it can be seen, the
performance over the cluster Jazz/Pop/Rock is higher than
the performance of for the other clusters. An explanation to
this is that the DSD100 dataset contains training multi-tracks
mainly from pop and rock music genres. This means that
the poorer performance of our method can be attributed to
the fact that recurrent models might need additional data for
modeling more complicated structures of singing voice.

5. CONCLUSIONS & FUTURE WORK

In this work we presented a deep learning method for mu-
sic source separation. The method used an encoder-decoder
configuration based on GRUs and skip-filtering connections
between input spectral representations and their hidden latent
variables, forcing the GRUs to approximate a time-frequency
masking operation. Its application to monaural singing voice
separation was studied and assessed objectively. The obtained
results signify that the skip-filtering connections can be used
for approximating time-frequency masks, providing com-
parable results to state of the art deep learning approaches.
Future work will focus on psycho-acoustically motivated loss
minimization and exploring sparsity priors for improving the
approximated time-frequency mask. Subjective assessment of
the plausible extensions of our methodology are also emerg-
ing [29]. Source code and listening examples can be found
under: https://github.com/Js-Mim/mlsp2017_
svsep_skipfilt.
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