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ABSTRACT

The process of audio mastering often, if not always, includes various audio signal processing techniques such as
frequency equalisation and dynamic range compression. With respect to the genre and style of the audio content,
the parameters of these techniques are controlled by a mastering engineer, in order to process the original audio
material. This operation relies on musical and perceptually pleasing facets of the perceived acoustic characteristics,
transmitted from the audio material under the mastering process. Modelling such dynamic operations, which
involve adaptation regarding the audio content, becomes vital in automated applications since it significantly
affects the overall performance. In this work we present a system capable of modelling such behaviour focusing
on the automatic dynamic range compression. It predicts frequency coefficients which allow the dynamic range
compression, via a trained deep neural network, and applies them to unmastered audio signal served as input. Both
dynamic range compression and the prediction of the corresponding frequency coefficients take place inside the
time-frequency domain, using magnitude spectra acquired from a critical band filter bank, similar to human’s
peripheral auditory system. Results from conducted listening tests, incorporating professional music producers
and audio mastering engineers, demonstrate on average an equivalent performance compared to professionally
mastered audio content. Improvements were also observed, when compared to relevant and commercial software.

1 Introduction

Audio production often includes a final stage of pro-
cess which is placed just before the stage of replication
and commercial distribution of the audio material. It is
entitled mastering and involves a series of audio signal
processing algorithms, aiming to provide an overall au-
dio enhancement in order to link the professional audio
with the hi-fidelity / home-entertainment industries [1].

Mastering consists of two main signal processing meth-
ods: i) equalisation of the frequency content, and ii)
dynamic range control. These two operations require
a considerable amount of parameters that have to be
defined and controlled, in order to process the audio
signals. Main ambition of this processing is to aestheti-
cally enhance perceived acoustic characteristics of the
signals [2]. The selection and the adjustment of these
parameters relies solely on a continuous interaction be-
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tween the audio / mastering engineer and the apparatus
that handles the audio signals.

During the above interaction takes place an acoustic
monitoring of the processed audio, driven through the
mastering apparatus. The aforementioned parameters
are adjusted until convergence to the desired result,
based on auditory feedback and a set of subjective crite-
ria, which are dependent on musical facets of the audio
corpus. On one hand this fact imposes an extensive
human effort but, on the other, it is the essence of a
successful procedure. Consequently, these criteria have
been proved to be substantial in audio production [3]
and especially in the design of intelligent systems that
automatically perform various tasks in different stages
of audio and music production [4], i.e. audio mixing or
mastering.

There have been published works concerned with pro-
viding automated solutions to the above-mentioned
time consuming routines [2]. They aim to unveil a
correlation between various audio signal features con-
tained inside the original audio material and the one
processed by the engineer [3, 5]. In most cases though,
the focus is in automated processes of audio mixing
where observations of the independent channels and
the target mixture signals are available [3, 4, 5].

For automated procedures in audio mastering, where
only the original (unmastered) and processed (mas-
tered) audio mixtures are available, only two ap-
proaches exist. The first tries to exploit statistical prop-
erties of the tracked fundamental frequency of the audio
content, in order to derive a set of frequency bands that
will be enhanced [6]. In that case the fundamental fre-
quency was extracted from the time-domain represen-
tation of the unmastered audio signals. The extracted
information was then used to compute histograms and
the most prominent observations of frequencies were
served as information to second order peaking-type
filters, boosting these particular frequency regions.

The second focuses on statistical properties of audio
signals which are used to control parameters for dy-
namic range compression [7]. In more detail, it takes
into account that dynamic range compression signifi-
cantly modifies the probability density function (PDF)
of the root mean square energy of the audio signal.
Thus, by minimizing the difference of the PDFs be-
tween the mastered and unmastered audio signals, in
short time frames, parameters for the dynamic range
control can be acquired [7].

These two approaches can be understood as an opera-
tion of simulating the process of audio mastering by a
recording or audio mastering engineer. It is non triv-
ial to define a feature space which will model such
complex and adaptive operations. Neither fundamental
frequency nor basic statistical properties could suffi-
ciently yield enough information for complex mod-
elling purposes, especially when the prior knowledge
of the audio corpus is limited, i.e. the observed two
channel mixtures before and after the processing.

A solution to the imposed difficulty from the limited
knowledge of the feature space could be given by factor-
ization techniques and especially non-negative matrix
factorization (NMF) [8]. Its application to observed
mixtures of audio magnitude spectral representations
can provide decompositions of the individual com-
ponents consisted inside the mixture. In addition to
this, the signal representation obtained by NMF also
allows various implementations of audio signal pro-
cessing techniques [9]. Nevertheless, in the case of
audio mastering, where much dynamic range compres-
sion and gain processes are usually applied [1], differ-
ent probability distributions should be assumed in the
NMF model, resulting into a much more complicated
model [10].

Deep neural networks (DNNs) seem to offer a straight-
forward method that encompasses the benefits from
the above techniques [11, 12]. Especially with their
capabilities in learning non-linear mappings from low-
level features to high-level ones [11]. More specifically,
a fundamental architecture of DNNs entitled autoen-
coders is capable of establishing various associations of
the presented data in an unsupervised fashion similarly
to NMF, while these auto-associated representations
can be served as features that provide predictions or
solutions to a specific problem [12].

In this work we try to expand the existing technologies
for automated mastering process by proposing a novel
system for off-line automated dynamic range compres-
sion. Our system is based on a DNN formed by two
pre-trained fully connected autoencoders. In partic-
ular, we try to map low-level, magnitude features to
dynamic range compression factors, in such a way that
it simulates the aesthetics of dynamic range processing
in audio mastering. This mapping is performed by a
trained DNN and is later used to compute gain factors
that modify the input magnitude spectra.
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The rest of this paper is organized as follows. Section 2
gives a detailed overview of the proposed system. Sec-
tion 3 describes the experimental procedure followed
for training the DNN. Obtained results are presented
and discussed in Section 4. Section 5 concludes the
paper and proposes possible feature directions of re-
search.

2 Proposed System

The proposed system consists of two components. The
first one is responsible for spectral analysis and syn-
thesis of the input audio signal while the second is
responsible for the prediction and utilization of neces-
sary factors that will be used to transform the original
spectra.

The stages of analysis and synthesis consist of short-
time Fourier transformation (STFT) and its inverse
(ISTFT), followed by an overlap and add operation.
From the output of the analysis stage, the magnitude
information is given to the second component, while
the phase is kept for the re-synthesis stage.

The second component utilizes the imported magnitude
information, warps its linear frequency resolution by a
filter bank and then drives it through a DNN, yielding
exponent coefficients, which are then used to transform
the warped spectra. Both transformed and unprocessed
warped spectra are being interpolated to their origi-
nal linear scale resolution, with their ratio providing
estimations of gain factors.

Finally, the gain factors are used to transform the com-
plex spectra captured by the first component and then
proceed with the time-domain synthesis of the corre-
sponding signal. An illustration of the proposed system
is being given in Figure 1.

The detailed processing in the proposed system oper-
ates as follows. A time domain signal x(n), with dis-
crete samples n, is transformed into a two-dimensional
time-frequency representation X[m,k], under the as-
sumption that x(n) is stationary inside m short time
frames and independent over k sub-band channels / fre-
quency bins. To do so, a STFT is used by evaluating
Equation 1 for 0≤ k < N:

X[m,k] =
N/2−1

∑
n=−N/2

w(n)x(n−mR)e− j2πkn/N . (1)
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Fig. 1: System Overview.

In the above equation N denotes the number of sam-
ples for the discrete Fourier transformation (DFT), R
the analysis step size and w(n) a hanning windowing
function. The resulting representation has a linear fre-
quency resolution. Our interest is to investigate and
model a perceptual process. For these reasons, the mag-
nitude information |X[m,k]| is warped to a non-linearly
scaled frequency resolution, denoted as Xw. This scaled
frequency resolution, includes information of critical
frequency bands, similar to human’s peripheral audi-
tory system.

It has to be noted that we are concerned with an offline
process, thus Xw is a matrix containing all time frames
m over the warped sub-bands c, derived from the input
audio signal. As for the warping procedure, it is per-
formed in two steps: i) compute triangular frequency
responses for each sub-band of the linear frequency
resolution, that form a matrix W and ii) perform a ma-
trix muliplication between the basis functions and the
magnitude spectra defined as :

Xw =W |X |. (2)

The dimensions of matrix W are C×M, with C and
M being the total number of sub-bands and short time
frames, respectively. The center frequencies and band-
widths employed for the basis functions, according to
the human’s peripheral auditory system and [13], are
given by:
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bc = 0.108 fc +24.7Hz, (3)

where

fc = 229[10(a1c+a0)/21.4−1] (4)

and c is an integer denoting the sub-band index and
c = 0,1,2, . . . ,C−1. a0 = 1.5 and a1 = 0.79 are con-
stants that determine the centre frequency of the lowest
band and the band density in critical bandwidth units,
respectively.

Then Xw is used as an input to the trained DNN which
outputs estimations of the exponent factor R̂. The latter
will be utilized in next stage for transforming Xw. More
specifically, the estimations are performed by simply
feed-forwarding the warped spectra, leading to a series
of matrix vector multiplications defined as :

hl
i j = g(Xw

i W l
i j +bl

j)

R̂i j = g(hl
i jW L

i j +bL
j)

(5)

where l is an index of the corresponding layer of the
network (l = 1, · · · ,L), g an activation function, which
in this work is the rectified linear (ReLU), and W l and
bl are the weights and biases of each layer l, respec-
tively. The index i corresponds to a vector containing
short time frames, matching the input dimensions of
the DNN and j the dimensions of the hidden layer
representation hl .

The predicted coefficients R̂ are in a matrix form of
the same dimensions as Xw. Then, the transformation
is performed by raising all the elements of Xw to the
power of R̂. For computing the gain factors G both
warped spectra Xw and Y w must be transferred to the
original linear scale. This can be performed using
Equation 6.

Y =W TY w

X̂ =W T Xw (6)

Gain factors G can now be computed by the element-
wise division of the above quantities, leading to:

G = fs(
Y
X̂
) (7)

where fs is a bounding sigmoid function, which will
ensure a distortion free reconstructions, defined as:

fs(x) =
2

1+ exp(−bx)
−1, for b = 2. (8)

Finally, an element-wise multiplication between the
computed gains and the original complex spectra is
performed followed by the ISTFT and overlap-add syn-
thesis procedure. In case of multichannel audio input,
the prediction is performed using the average, over the
number of channels, magnitude spectra while the gain
is applied to all input channels.

3 Experimental Procedure

The experimental procedure is divided in two stages.
The first one is concerned with the training procedure
of the DNN, including training data preparation, net-
work topologies and the strategies followed, in order to
perform the mapping from low level acoustic features
to the factors R. The latter stage, consists of the prepa-
ration of another audio corpus, containing processed
files from various operations including professional
ones and from commercial software.

3.1 Training Procedure

The overall training process is performed in three steps.
The first two incorporate an unsupervised learning ap-
proach and the third one, henceforth called fine-tuning,
is done in a supervised fashion. During the fine-tuning
step, the input and target functions are matrices of the
same dimensions that contain the warped spectra Xw

and true estimates R, respectively. These are given as
objectives to the DNN.

In order to acquire the target function we implemented
an iterative analysis of the training dataset which
was acquired from an online dataset [14]. The lat-
ter contains both mastered and unmastered versions
of audio tracks from various genres. Thus, for each
version, i.e. mastered and unmastered, of all the
audio tracks we computed Xw with the described
methodology. By having analysed pairs of unmas-
tered and mastered audio signals, their logarithmic
ratio R = log10(Y w)(log10(Xw))−1 can provide the
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dynamic range factor for the corresponding frequency
sub-bands [15, 9].

In practice, mapping Xw to the dynamic range factor
resulted in a poor function fitting. In addition to this,
it was experimentally observed that time fluctuations
of magnitude spectra would also penalise the fitting
procedure in an undesired manner. For dealing with the
mapping issue, two prior steps of unsupervised learning
relying on autoencoders were introduced. With this
technique the initial parameters for the DNN, in fine-
tuning stage, can be learned and thus resulting a better
convergence to the desired result.

As for the time fluctuation, the matrices used in the
objective of each training instance were reshaped so
each column contained five short time frames of Xw.
The training procedure consists of the following proce-
dures:

1. Train a deep autoencoder, with four layers of 260
fully connected, ReLU, nodes using Xw as input
and target functions.

2. Train a deep autoencoder, with three layers of
260 fully connected nodes using R as input and
target functions. For the first two layers, the ReLU
activation function g is used. The number of nodes
of the hidden layer representation is equal to 350.

3. Construct a new DNN with seven layers in total,
using the same dimensions and activation func-
tions as above. Initialize this DNN with the pre-
trained parameters W l and bl , acquired from the
first steps. Train this network with Xw as input
and R as target functions, respectively.

Each of the above training procedure was performed
over a 150 iterations, i.e. epochs, through the dataset
while the parameters updates where performed in a
small batch size of 20 matrix rows i. For all the layers l
during the first two steps, a uniform distribution was se-
lected to pseudo-randomly initialize all the parameters.
The optimization technique used is described in [16]
with its criterion set to the mean squared error (MSE).

Finally, both autoencoders, i.e. ones from procedures 1
and 2, where trained using the dropout technique [17]
with a probability of 0.3 for a neural unit to stop con-
tributing to the training at each epoch. The selection
of the aforementioned parameters and techniques was

Table 1: Employed system parameters.

Parameter Quantity
Window size (w(n)) 2049 samples
DFT size (N) 4096 samples
Step size (R) 1025 samples
Number of critical bands (C) 52

based on informal experimentation and empirical obser-
vations. A comprehensive overview of the parameters
used throughout all the described procedure can be
found in Table 1.

3.2 Audio Corpus Preparation and Subjective
Evaluation

For the evaluation of the proposed system we utilized a
different dataset obtained from an online source [18].
This consisted of different unmastered audio tracks
in a multi-channel form, which can be categorized
to various music genres, e.g. jazz, pop, rock, ethnic,
electronic etc. Each audio track was mixed by the
authors by the usage of a typical digital audio work-
station (DAW). The mixing process yielded four stems
(groups) of the aforementioned multiple channels such
as vocals, percussion, bass and other.

From these stems we exported two versions of the eight
audio tracks. One version contained the mixture of the
stems alongside a professional mastering procedure,
following guidelines and best practices for dynamic
range compression and equalization described in [1, 2].
For the second version only the mixing process was
considered. Table 2 demonstrates the utilised apparatus
for mixing and mastering the audio corpus.

Table 2: Utilised apparatus

Usage of apparatus Brand & model
Monitoring System Audio Technica ATHM40FS
I/O Interface N.I. Komplete Audio 6
DAW Pro Tools First

The version which contained only the mixture, was
served as input to the proposed system and to one com-
mercial software that is acknowledged to perform au-
tomated procedures in audio mastering [19]. In more
detail, the software from [19] denoted as AAMS, per-
forms spectral equalization and dynamic range com-
pression for audio mastering purposes, by defining the
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music genre of the input audio signal. After the genre
definition based on descriptions of [18], the automatic
procedure took place and the outcome was stored in an
uncompressed format.

From the above procedure the three resulting versions,
i.e. professionally mastered, processed by the proposed
method and by the AAMS software, were segmented
into instances of 30 seconds. The segmentation was
performed for each individual audio track, but same
time regions for all the versions of each track were
selected. The criteria for segmentation was the contri-
bution of all the stems to the mixture. In addition to
this, all the versions were normalized to have an equal
RMS energy, since loudness is outside the scope of this
research.

Nine experienced and professional music producers,
mixing and mastering engineers, with relevant studies
participated in a subjective evaluation experiment. The
main objective was to grade each version according to
their subjective preference, assuming 1 as the lowest
grading point denoting poor performance, and in con-
trast 10, best performance. All grades were given with
respect to the dynamic range and spectral balance of the
audio material. A random shuffling of the versions was
performed before the experiment, while the amount
of playback repetitions and the used monitoring/audio
reproducing hardware was subject to each participant.
The only requirement was the usage of studio quality
headphones.

4 Results & Discussion

Results from the subjective evaluation are illustrated in
Figure 2. The lower and upper quartiles are depicted
with the lower and upper horizontal lines of each box.
Red line indicates median value of grading, while cross
denotes an outlier in the observations.

By observing Figure 2 it can been seen that the pro-
posed system performs worse than professional mas-
tering operations, but on average equally well with the
AAMS commercial system that we utilized. A closer
inspection on the results’ figure can also reveal that
although our and the AAMS system have an equal me-
dian rating, the former exhibits more higher ratings
than the latter. The difference of the upper quartiles
is at the order of one degree in the employed rating
scale. This fact clearly depicts that the 25% of the
upper ratings were significant higher than the ones of
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Fig. 2: Variation Analysis of Subjective Grading for
the three versions yielded from the correspond-
ing systems.

the reference system. A similar trend can be seen on
the lower quartile where the proposed system exhibits
greater minimum ratings than the AAMS one. The
difference of the lower quartile values between the pro-
posed and the reference systems is at the order of 1.5
points in the used rating scale.

Finally, one more interesting observation is that the up-
per quartile value in Figure 2 for the proposed system is
almost the same as the one from the ratings that profes-
sional mastered versions had and the lower quartile is
less than one rating degree lower from the correspond-
ing one of the professionally mastered versions. This
fact clearly demonstrates the improvement in the result-
ing dynamic range compression and spectral balance
from the proposed system over the existing state of the
art where the reference system had lower upper quartile
at the order of one rating degree and almost two rating
degrees smaller value of the lower quartile.

5 Conclusions

In the work at hand we focused on automated audio sig-
nal processing for audio mastering applications. We uti-
lized DNNs relied on the useful initialization provided
by autoencoders, for predicting dynamic range com-
pression and spectral balance enhancement parameters.
The latter were automatically applied to unmastered
audio tracks. The resulting automated mastered audio
material was compared to professionally mastered ver-
sions of the same musical compositions. In addition,
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we also created automated mastered versions, again of
the same audio tracks, with another and commercial
system for automated mastering.

In order to evaluate our system we compared the above-
mentioned mastered versions, i.e. the professionally
mastered one, from the proposed system and from the
reference one, by implementing subjective evaluation
tests. In the latter were participating currently active
professional master and recording engineers. The re-
sults of the subjective evaluation tests depicted that the
proposed system achieves an average rating same as the
reference one and less than the professionally mastered
versions. Nevertheless, the proposed system clearly
received more higher ratings than the reference one, as
illustrated at the resulting box plots of the subjective
evaluation.

Nevertheless, there are significant improvements to
be implemented at the existing automated mastering
systems in order to achieve a subjective rating similar
to the one that a professional mastering engineer would
have.
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