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ABSTRACT
Legacy technologies for word recognition can benefit from emerging affective voice retrieval, potentially
leading to intelligent applications for smart houses enhanced with new features. In this work we introduce
the implementation of a system, capable to react to common spoken words, taking into account the esti-
mated vocal stress level, thus allowing the realization of a prioritized, affective aural interaction path. Upon
the successful word recognition and the corresponding stress level estimation, the system triggers partic-
ular affective-prioritized actions, defined within the application scope of an intelligent home environment.
Application results show that the established affective interaction path significantly improves the ambient
intelligence provided by an affective vocal sensor that can be easily integrated with any sensor-based home
monitoring system.

1. INTRODUCTION
Current intelligent house technologies can offer a va-
riety of features for home automation, such as au-
tomatic monitoring of bedrooms [1], monitoring of
human comfort with wireless sensors [2], control and
monitoring of energy consumption and ambience in-

telligence [3], as well as speech-based interactive con-
trol [4] to name a few. In all the above cases, a di-
rect communication channel between the user and
the corresponding system interface exists, usually
based on visual (i.e. gestural) or aural (i.e. speech)
information received, processed and recognized. A
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typical example is demonstrated in [5], where both
audio and visual channels are employed for realizing
the necessary human-machine interaction path.

Focusing on the audio channel as a means for phys-
ical interaction, speech is suitable for immediate,
time-critical interaction. Legacy techniques for key-
word recognition, allow the implementation of voice-
driven functionalities for home automation, for ex-
ample for monitoring and detecting emergency con-
ditions [6]. In the literature, a wide range of ap-
proaches exist dealing with the problem of voice-
command recognition [7]. Focusing on techniques
for restricted sets of commands and for any speaker,
which is the most typical case met in interac-
tive home automation environments, efficient per-
formance in terms of correct word recognition can
be achieved, frequently at the expense of high com-
putational loads and complexity.

A significant aspect that may enhance the supported
user - system interaction is the ability to detect the
users emotional state. This information can be com-
bined with the audiovisual channel interaction, aim-
ing to ensure the correctness of the decisions that
will be further taken. Currently, there are numer-
ous researches regarding affective computing, user
emotion modeling and retrieval and, particularly,
emotion recognition from audio (music and speech)
data. Focusing exclusively on speech emotion recog-
nition, there are recent researches investigating var-
ious emotions modeling cases, like fear, stress, anger
etc [8, 9]. On the other hand, the major limitation
of existing speech-emotion retrieval techniques is the
absence of unified models for defining the exact re-
lations between the audio signal characteristics and
the raised affective condition.

In this paper we present the implementation of a
a system for recognizing specific spoken words, en-
hanced with the ability to categorize the recognized
words based on the speaker stress level. Although
the exclusive focus on stress as the only recognizable
emotion can be considered restricted, it provides a
robust and efficient implementation framework in
terms of affective modeling and emotion retrieval
algorithmic complexity, which is fully adapted to
the particular requirements imposed by the targeted
home-automation applications. Hence, the proposed
approach allows the consideration of every-day life

spoken words, which are mapped to specific moni-
toring decisions based on the respective stress-level.
Moreover, the proposed affective/priority mapping
mechanism allows for fine-tuning of the monitor-
ing mechanism and the significant reduction of false
alarm cases that can be raised due to the employ-
ment of commonly used verbal commands. It should
be also noted that the basic design aim of this work
was the ability to integrate the system implemen-
tation within any (digital) microphone capsule, tar-
geting to the production of an integrated, intelligent
affective vocal sensor that can be combined with al-
ternative sensor mechanisms existing in an in-house
monitoring environment.

The rest of the paper is organized as follows: In Sec-
tion 2, a brief overview of existing works on both
voice keyword recognition and voice emotion recog-
nition is presented. Section 3 analyses the archi-
tecture of the proposed system and provides a fur-
ther description of the major implementation issues.
Next, Section 4 includes the description of a se-
quence of tests performed in order to assess the per-
formance of the system and provides a summary of
the results obtained. Finally, Section 5 concludes the
work, defining specific issues that can be considered
in the future.

2. SPEECH RECOGNITION AND VOICE EMO-
TION RETRIEVAL
In this section, we attempt to present the state-of-
the-art in the areas of speech/word recognition and
voice emotion assessment, aiming to establish the
fundamental concepts of both topics for presenting
the proposed system implementation details.

2.1. Voice activity detection
Voice activity detection (VAD) is a task that takes
place whenever it is required to trim the input sig-
nal to those time regions containing voice activity.
It is usually used as a pre-processing module in com-
plete speech recognition systems and it can be real-
ized as a real-time or non-real time task. For real-
time processing, existing implementations delay the
input buffers of the recording device and compare
their content to the data contained in the consecu-
tive ones. There are also many implementations of
VAD systems which make use of more sophisticated
algorithms, regarding the decision for voiced and un-
voiced regions, like [10] that is based on wavelets and
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[11], which uses wavelets and support vector ma-
chine.

The aforementioned algorithms achieve significant
performance under the expense of introducing heavy
computational load (especially for real-time applica-
tions supported by embedded hardware with small
processing power). However, in [12], a robust and
relatively simple algorithm for VAD is described.
This algorithm makes use of short term features
of the input signal and achieves a detection accu-
racy in the area of 97%. The short term features
used are the instantaneous energy, the spectral flat-
ness and the dominant frequency of the input sig-
nal. Each of these features is calculated in succes-
sive frames and upon the comparison with specific
feature-dependent thresholds, a decision whether or
not the input frame indicates voice activity is made.

2.2. Voice keywords recognition
In general, legacy voice recognition techniques for in-
dependent speakers extract technical features from
the voice signal and compare them to the corre-
sponding features obtained from a specific data cor-
pus, which is used as the ground truth data [13].
Standard methods for isolated voice keywords recog-
nition include the extraction of the frequency com-
ponents of the voice signal, processing of the feature
components and comparison of the processing out-
come against the corresponding features of the data
set used for validation [14].

Among the most commonly used features are the
Mel Frequency Cepstrum Coefficients (MFCC) [13,
14, 15], whereas the Dynamic Programming (DP)
algorithm used for comparison is the Dynamic Time
Warping (DTW) and the k-th Nearest Neighbours
(k-NN) method is employed for categorization. The
incorporation of MFCC allows direct frequency map-
ping to the Mel frequency space, while the usage of
DTW allows the comparison of signals with different
time lengths.

The aforementioned recognition strategies are well-
known for their robustness and, although many al-
ternative methods for feature extraction have been
proposed, like the Perceptual Linear Prediction, no
significant efficiency variations are reported [16]. In
addition, regarding the pattern matching process,
Hidden Markov Models (HMM) are also widely used.
Nevertheless, even if weaknesses for DTW are men-
tioned regarding speakers’ dependencies [17], DTW

is considered to achieve better efficiency with smaller
data sets against HMM [18].

2.3. Voice emotion recognition
Emotion recognition from voice channel is an emerg-
ing field of research with applications varying from
plain emotion recognition to human-to-machine
speech communication [26]. Moreover, speech emo-
tion recognition has been used in applications for
call centers, regarding the management of incoming
calls according to the emotional state of the caller
[27].

In general, speech/voice emotion recognition can be
considered as a pattern matching problem [26]. In
that sense, the process concerns the extraction of
voice-signal characteristics and their comparison to
specific thresholds. More specifically, a number of
acoustic cue values is extracted from the voice chan-
nel and is further compared against ground truth
data using categorization algorithms. In order to
produce the above ground truth data, an affective
model must be considered. Many relative works have
pointed out that emotions are short and intense re-
actions to an external stimuli originating from the
subject’s environment [19, 20]. However, a relatively
high variety of models for emotion recognition exist.
A general categorization of these models includes a)
discrete and b) dimensional models [21]. In the ex-
isting literature an ongoing debate is observed about
which of the two is most appropriate to use [22, 23].
Nevertheless, in these two categories lay the most
frequently used models in the field of audio emotion
recognition, i.e.: a) basic emotions, b) list of adjec-
tives, and c) valence - arousal or valence - dominance
- arousal space [24, 25], with the later being a dimen-
sional model.

The main acoustic cue usually considered is the fun-
damental frequency (pitch) of voice [26, 28]. Addi-
tional acoustic cues may include speech rate (tempo)
[29, 30], the instantaneous voice energy [30], as
well as the combined variability of the above cues
[29, 30, 31]. Different ranges of the aforementioned
acoustic cues values are related to different emotions
[29, 30]. The above relations between the acoustic
cue values and the recognized emotions are termed
as emotions’ profiles. For example, the acoustic pro-
files for anger, fear, sadness and happiness, com-
pared to normal speech, are shown in Table 1, follow-
ing the emotions’ profiles proposed in [26, 29, 30, 32].
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Finally, the above acoustic cue values serve as input
to the categorization algorithm employed for deriv-
ing the desired affective classification, taking into
account the emotional profile considered. For exam-
ple, if an increment in the fundamental frequency is
observed and both the speech rate and signal energy
are decreased, then the identified emotion is happi-
ness.

Emotion
Acoustic Cue

F0 SR E
Anger Increase Increase Increase
Happiness Increase Decrease Increase
Sadness Decrease Decrease Decrease
Fear Increase Increase Increase

Table 1: Emotion profiles for anger, fear, sadness
and happiness compared to normal speech. F0 is the
fundamental frequency, SR is the speech rate and E
is the energy of the voice signal

3. THE PROPOSED SYSTEM
The proposed system recognizes specific spoken
words, belonging into a pre-defined verbal set, en-
hanced with the ability to categorize them based
on the speaker stress level. This categorization is
equivalent to an action prioritization scheme based
on the assessed stress level. The employed command
sets are defined using every-day life spoken words,
which are however used in emergency situations, e.g.
”Fire”.

The general architecture of realized system includes
three subsystems, namely the Voice Activity Detec-
tor (VAD), the Voice Keyword Recognizer (VKR)
and the Voice Stress Classifier (VSC). Figure 1 out-
lines the overall system architecture, which is further
analyzed in the next Sections.

3.1. Voice Activity Detector Subsystem
The VAD algorithm used in this work was originally
introduced in [12]. The input voice signal is divided
in frames of length equal to N=160 samples, denoted
here as Si. For each frame, the total energy (E), the
spectral flatness (Sf) and the dominant frequency
(FD) are calculated. E is calculated as:

E =
1

N

N∑
i=1

Si
2 (1)

VAD

No
VKR

Yes
No

VSC

Yes

Normal 

Action

Prioritised 

Action

No

Yes

Fig. 1: The emergency voice/stress-level combined
recognition system architecture

Accordingly, Sf is calculated as

Sf = 10 log10 (Gm /Am) (2)

where Am and Gm are the arithmetic and geometric
means of the signal’s spectrum, respectively. Finally,
FD is calculated using the equation:

FD = max (|Sf |) (3)

where |Sf | denotes the signal’s spectrum magnitude.

For a complete algorithm analysis, the reader is en-
couraged to take a look in [12]. In brief, during
consecutive signal’s blocks processing, if at least two
of the E, Sf and FD measures are found to exceed
the corresponding defined thresholds, then the seg-
ment is considered voice-active. The algorithm ig-
nores less than 10 successive segments marked as
voice inactive and less than 5 successive segments
marked as voice-active. The VAD subsystem archi-
tectural layout is illustrated in Figure 2. The pri-
mary threshold values used in the proposed system
are ilustrated in Table 2.

The above VAD algorithm was chosen in respect
with the induced computational load, since for the
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Energy value Frequency bin Sf value
10−4 2 5

Table 2: Primary threshold values used in the VAD
subsystem

Voice Activity Decision

Spectral Flatness 
Threshold

Dominant Frequency 
Threshold

Energy 
threshold

Threshold - Estimated 
Values Comparison

N Size 
buffer

Input 

Gate

Output

Feature Extraction

Energy 
estimation

Dominant frequency 
estimation

Spectral flatness 
estimation

Fig. 2: VAD subsystem architecture

purposes of the current work, it was realized on em-
bedded hardware. Towards this aim, all calculations
were carried out using fixed point arithmetic, includ-
ing the Fast Fourier Transformation, for which the
Ooura’s library [33] was used.

3.2. The voice Keyword Recognizer
The VKR subsystem makes use of the Mel Fre-
quency (MF) scale and the Discrete Cosine Transfor-
mation (DCT) for signal feature extraction. More-
over, DTW and k-NN are employed for pattern
matching and final decision making. The overall lay-
out of the VKR subsystem is presented in Figure 3.

The Hamming windowing function used is applied
on input signal’s segments equal to M = 512 sam-
ples. Next, the Fast Fourier Transform (FFT) for
each segment is calculated, followed by an MF map-
ping and a DCT on the obtained MF’s. The result
of this procedure is an L×M matrix, where L equals
to the total number of the recorded signal segments

within the specific voice activity region. This ma-
trix is compared to the training data set using the
DTW algorithm, thus producing comparison scores.
The most dominant score is determined by the k-NN
algorithm, indicating the recognized keyword.

The VKR subsystem was trained using a small
data set consisting of every-day life words indicat-
ing emergency conditions (see below for the selected
complete set of these words). Hence, DTW and
k-NN were chosen as DP and categorization algo-
rithms, since it is known that they provide better
results for such data sets [18]. Moreover, MFCC
were chosen against LPC, due to its much simpler
implementation [16]. During training, the results
provided were stored in the system internal storage
(flash memory). The small size of the available mem-
ory in embedded systems represents a major limita-
tion for the selection of the training data set volume.
For this reason, in order to allow the increment of the
recognized words number, only normal (unstressed)
words were used as training data.

Feature Extraction

MFCC

Feature Comparison

Windowing 

Input from VAD

FFT
Mel Frequency

Mapping

DTW

Train 
data

k-NN

Output

DCT

Fig. 3: VKR subsystem architecture

3.3. The voice stress classifier
The voice stress level estimation is based on the
Arousal - Valence affective model that was origi-
nally proposed in [34]. Based on this model, fear
and anger can be expressed in terms of low valence
and high arousal values and they are mapped into
the same quadrant of the Arousal - Valence space
(see the corresponding emotional profile in Table 1).
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It should be also noted here that these two emo-
tions are considered to belong to the same family of
emotions, even when following the alternative dis-
crete emotions model [30]. However, since stress is
not directly included in the discrete emotion set, we
hereby consider the same acoustic profile for stress
level recognition, since stress is a common compo-
nent of both aforementioned emotions, especially un-
der emergency situations particularly considered in
this work.

Using the above valence-arousal stress representa-
tion, the computational load required for realizing
the voice stress classifier is obviously reduced, com-
pared to sophisticated methods for emotion recogni-
tion that typically employ Support Vector Machines
(SVM), HMMs and neural networks [31, 35, 36]. Un-
der the proposed approach, we only need to calculate
simple signal characteristics and parameters, such as
energy, speech rate and fundamental frequency.

The architectural layout of the VSC module is il-
lustrated in Figure 4. It has two inputs. The first
one is the raw voice signal derived from the VAD.
The second is the recognized word from the VKR
subsystem fed to the VSC as an 8-bit unsigned inte-
ger index. Regarding the former input, as mentioned
previously, three acoustic cues are calculated: a) the
instantaneous energy value (E), b) the speech rate
variability (SrV ), and c) the fundamental frequency
variability (F0V ).

Input from VAD

Stress Level Estimation

Energy estimation
Speech rate 

variability estimation

Fundamental 

frequency variability 

estimation

Features' Recall From Disk

Choise of 

stored data
Stored 

data

Read data

from disk

Comparison
Output

Input from VKR

Fig. 4: VSC subsystem architecture

The values of each of the aforementioned acoustic
cues are compared to the corresponding thresholds

stored in the system internal memory. These thresh-
olds are defined during the training period of the
VSC module. Further details on this issue are pro-
vided in Section 4.1. If all the measured values
are exceeding the above thresholds, then the out-
put of the VSC subsystem simply indicates wether
the speaker experiences stress. Hence, the priorities
used here are ”High” and ”Low”, corresponding to
the presence and non-presence of stress respectively.
This indication may serve as input to the action-
taking system, being part of the intelligent house
monitoring application environment.

4. RESULTS
System training and testing was performed using dif-
ferent training and testing speaker volunteers. They
were all equally selected in terms of genre. All par-
ticipants were students from the department of au-
diovisual arts, having basic skills as actors and per-
formers. This was a basic requirement, since they
had to train and evaluate the system performance
under controlled stress and no-stress conditions.

Due to the absence of an emotion annotated speech
corpus in Greek, all of the considered words had to
be recorded in both stress conditions needed. In or-
der to include all possible usage cases, these words
were chosen as following: Nearly half of them in-
dicate emergency situations, while the rest have ir-
relevant semantic content. The usage of the latter
emergency-irrelevant words was chosen in order to
decorrelate the semantic content of the words with
the acoustic cues’ differentiation in different stress
conditions. The application vocabulary finally in-
cluded five spoken greek words, with their direct
translation to english being:

1. Thief

2. Earthquake

3. Fine

4. Fire

5. Good morning

4.1. System training
During system’s training, ten participants were
given instructions regarding the training proce-
dure. They were instructed to enunciate all the
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words under stress and normal (no-stress) condi-
tions. Their speech was digitally recorded. Ten
different training participants were then employed
to cross-validate the emotional state of the recorded
words. Only those recordings that obtained confu-
sion scores lower than 20% were finally incorporated
in the training data set.

For the words included in the training data set,
the mean signal energy, the mean fundamental fre-
quency and the mean speech rate for both stress
cases were calculated. These values were used to
estimate for each acoustic cue the stress-related
threshold per word. More specifically, the energy
threshold was defined as the difference of the mean
voice signal energy under stress and no-stress condi-
tions. The same approach was employed for defin-
ing the speech ratio variation threshold. Finally, the
fundamental frequency threshold was set equal to
the difference of the mean fundamental frequency
minus the 80% ratio of the mean variation of the fun-
damental frequency in the different emotional states.
The results obtained during the above procedure,
including the derived threshold values, are summa-
rized in Figures 5, 6, and 7.

1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

Word index

N
o
rm

a
lis

e
d
 e

n
e
rg

y

 

 

Mean energy (no stress)

Mean energy (stress)

Energy threshold

Fig. 5: Mean energy values and thresholds (per
word)

With respect to the speech rate acoustic cue, it
must to be noted that, although an increase is men-
tioned in the literature with the anger/fear intensity
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thresholds (per word)
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Fig. 7: Mean speech rate values and thresholds (per
word)

[29, 30, 31], in Figure 7 a decrease with stress is ob-
served. This trend can be explained taking into ac-
count that we consider single words (and not phrases
of words), as well as their semantic content. In par-
ticular, when a speaker under stress yells for example
the single word ”thief”, it is likely that he/she pro-
longs the word. Hence, the encountered speech rate
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is reduced under stress conditions.

4.2. Subjective performance evaluation
During the system’s evaluation period, each partic-
ipant was asked to perform each of the five words
under both stress conditions in a random order. A
total of sixteen (16) human subjects participated in
this sequence of tests. The obtained confusion ma-
trices for all the words recorded under normal and
stress conditions are shown in Tables 3 and 4 respec-
tively.

From Table 3, it is clear that the successful stress
recognition rate among all words reaches up to 91%,
independently from the stress condition. Moreover,
the false alarm cases occurred due to stress miss-
recognition is nearly 25%. On the other hand, in
the stress case (see Table 4), the overall recogni-
tion rate independently from the emotional condi-
tion is close to 88%. The non-triggered alarm cases
are nearly 25%. Moreover, one can observe nearly
absolute correct stress level identification in the case
that the words are performed under stress. However,
in this case, a small percentage of false word recog-
nition occurs. Table 5 also summarizes the maxi-
mum and mean accuracy achieved for all the words
- members of the considered corpus and for both
stress and non-stress conditions. It must be noted
that both VKR and VSC subsystems are speaker in-
dependent. Moreover, as mentioned in the previous
Section, the training data set employed was obtained
from non professional actors and performers. Thus,
the authors believe that the above small probability
of misjudging the speaker stress condition can be sig-
nificantly decreased by realizing more accurate data
sets.

5. CONCLUSIONS
New technologies for remote control of many in-
house apparatus are emerging, focusing on mul-
timodal interaction paths, typically including ges-
ture/event and voice-signal recognition. Considering
the latter case, in this work a system for recognizing
specific spoken words is proposed, enhanced with the
ability to categorize and prioritized them based on
the speaker stress level. This approach allows the
consideration of every-day life spoken words, which
are mapped to specific monitoring decisions based
on the respective stress-level. Moreover, in an in-
house monitoring environment, it also offers the abil-

Recognised
as

No Stress Test Words
1 2 3 4 5

1
Normal 61% 0% 0% 0% 0%
Stress 26% 0% 6% 0% 0%

2
Normal 0% 72% 0% 0% 0%
Stress 0% 22% 0% 0% 0%

3
Normal 0% 0% 62% 6% 10%
Stress 0% 0% 27% 0% 0%

4
Normal 0% 0% 0% 76% 6%
Stress 0% 0% 0% 18% 6%

5
Normal 0% 0% 6% 0% 63%
Stress 0% 0% 0% 0% 25%

Miss recognition 13% 6% 0% 0% 0%

Table 3: Confusion matrix for the test words per-
formed without stress

Recognised
as

Stress Test Words
1 2 3 4 5

1
Normal 18% 0% 0% 0% 0%
Stress 64% 0% 0% 0% 0%

2
Normal 0% 25% 0% 0% 0%
Stress 0% 63% 0% 0% 0%

3
Normal 0% 6% 18% 0% 0%
Stress 12% 0% 76% 12% 0%

4
Normal 0% 0% 0% 18% 6%
Stress 0% 0% 0% 70% 12%

5
Normal 0% 0% 6% 0% 25%
Stress 0% 0% 0% 0% 57%

Miss recognition 6% 6% 0% 0% 0%

Table 4: Confusion matrix for the test words per-
formed under stress

No stress words Stress words
Max Mean Max Mean

VKR 94% 90% 94% 87%
VSC 76% 67% 76% 66%

Table 5: Mean accuracy results achieved by the
VKR and VSC subsystems

ity to prioritize the actions that should be further
performed.

The proposed system incorporates typical
voice/speech recognition tasks and a stress-
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level assessment method. Voice recognition is based
on acoustic cue extraction from short-term spectral
features (i.e. Mel frequencies cepstral coefficients).
Features like Dynamic Time Warping render it
signal-length independent, while the k-th Nearest
Neighbors algorithm is responsible for the final
recognition decision. Voice activity detection is also
used for determining instances of silence.

The stress-level detector used employs a combina-
tion of criteria such as the short-time energy, the
instantaneous speech rate and the variability of the
fundamental frequency, which are directly associ-
ated to physiological conditions commonly observed
under fear and anger. These emotions belong in
the same quadrant in the Arousal - Valence space
used for modeling human emotions. We hereby con-
sider that stress is a common affective factor for
these emotions, hence its detection can be performed
based on the same acoustic emotional profiles.

A sequence of tests has shown that the mean accu-
racy for the word recognition task is nearly 90% for
both stress and no-stress cases. Stress estimation
accuracy is in the range of 70%, resulting into non-
recognized alarms and false alarm percentage in the
range of 25%. Due to the high correlation observed
between the results and the training data set, it is
expected that with word recordings obtained from
professional actors, the overall recognition and pri-
oritization accuracy of the system can be improved.
This is a task that will be considered in the near fu-
ture by the authors, together with modifications on
the particular signal processing algorithms for min-
imizing the implementation requirements raised in
terms of computational load. The latter fact is fun-
damental for optimizing the real-time performance
of the system in embedded platforms, as a part of
an intelligent sonic sensor for in-house monitoring
applications.

6. ACKNOWLEDGEMENTS
The research activities that led to these results,
were co-financed by Hellenic Funds and by the Eu-
ropean Regional Development Fund (ERDF) under
the Hellenic National Strategic Reference Frame-
work (ESPA) 2007-2013, according to Contract no.
MIKRO2-40/E-II-A.

7. REFERENCES

[1] Y. Huishan, et al., ”The Designs of Intelligent
Bedroom Network Monitor System,” Procedia
Engineering, vol. 15, pp. 644-648, 2011.

[2] M. I. M. Rawi and A. Al-Anbuky, ”Develop-
ment of Intelligent Wireless Sensor Networks for
Human Comfort Index Measurement,” Proce-
dia Computer Science, vol. 5, pp. 232-239, 2011.

[3] D. J. Cook, et al., ”Ambient intelligence: Tech-
nologies, applications, and opportunities,” Per-
vasive and Mobile Computing, vol. 5, pp. 277-
298, 2009.

[4] J.-i. Takahashi, et al., ”Interactive voice tech-
nology development for telecommunications ap-
plications,” Speech Communication, vol. 17, pp.
287-301, 1995.

[5] M. Ben Ammar, et al., ”The Affective Tutoring
System,” Expert Systems with Applications,
vol. 37, pp. 3013-3023, 2010.

[6] M. Hamill, et al., ”Development of an auto-
mated speech recognition interface for personal
emergency response systems,” Journal of Neu-
roEngineering and Rehabilitation, vol. 6, 8 July
2009.

[7] G. Poli, et al., ”Voice Command Recognition
with Dynamic Time Warping (DTW) using
Graphics Processing Units (GPU) with Com-
pute Unified Device Architecture (CUDA),”
presented at the 19th International Symposium
on Computer Architecture and High Perfor-
mance Computing, 2007. SBAC- PAD 2007,
Rio Grande do Sul, 2007.

[8] P. N. Juslin and K. R. Scherer, ”Vocal expres-
sion of affect,” in The New Handbook of Meth-
ods in Nonverbal Behavior Research, J. A. Har-
rigan, et al., Eds., ed Oxford, Great Britan: Ox-
ford Unversity Press, 2005, pp. 65-135.

[9] T. Johnstone, et al., ”The voice of emotion: an
FMRI study of neural responses to angry and
happy vocal expressions,” Social Cognitive and
Affective Neuroscience, vol. 1, pp. 242-249, De-
cember 1 2006.

AES 132nd Convention, Budapest, Hungary, 2012 April 26–29

Page 9 of 11



Drossos et al. Emergency Voice/Stress-level Combined Recognition for Intelligent House Applications

[10] M. Eshaghi and M. R. Karami Mollaei, ”Voice
activity detection based on using wavelet
packet,” Digital Signal Processing, vol. 20, pp.
1102-1115, 2010.

[11] S.-H. Chen, et al., ”Improved voice activity de-
tection algorithm using wavelet and support
vector machine,” Computer Speech & Lan-
guage, vol. 24, pp. 531-543, 2010.

[12] M. H. Moattar and M. M. Homayounpour, ”A
Simple But Efficient Real-Time Voice Activity
Detection Algorithm,” presented at the 17th
European Signal Processing Conference (EU-
SIPCO 2009), Glasgow, Scotland, August 24-
28, 2009

[13] W. Huang, et al., “A neural net approach
to speech recognition,” presented at the In-
ternational Conference on Acoustics, Speech,
and Signal Processing, 1988. ICASSP-88., 1988,
New York, U.S.A., 1988.

[14] T. Nomura and R. Nakatsu, ”Speaker-
independent isolated word recognition for tele-
phone voice using phoneme-like templates,”
presented at the IEEE International Conference
on ICASSP ’86 Acoustics, Speech, and Signal
Processing, Tokyo, Japan, 1986.

[15] M. Benzeghiba, et al., ”Automatic speech
recognition and speech variability: A review,”
Speech Communication, vol. 49, pp. 763-786,
2007.

[16] I. Mporas, et al., ”Comparison of Speech Fea-
tures on the Speech Recognition Task,” Journal
of Computer Science, vol. 3, pp. 608-616, Aug
2007.

[17] K. Chanwoo and S. Kwang-deok, ”Robust
DTW-based recognition algorithm for hand-
held consumer devices,” IEEE Transactions on
Consumer Electronics, vol. 51, pp. 699-709,
2005.

[18] T. F. Furtuna, ”Dynamic Programming Algo-
rithms in Speech Recognition,” Revista Infor-
matica Economica, vol. 12, pp. 94-99, 2008.

[19] P. N. Juslin and P. Laukka, ”Expression, Per-
ception, and Induction of Musical Emotions: A

Review and a Questionnaire Study of Everyday
Listening,” Journal of New Music Research, vol.
33, pp. 217 - 238, September 2004.

[20] P. N. Juslin and D. Vastfjall, ”Emotional re-
sponses to music: The need to consider under-
lying mechanisms,” Behavioral and Brain Sci-
ences, vol. 31, pp. 559-575, 2008.

[21] S. Kai, et al., ”An improved valence-arousal
emotion space for video affective content rep-
resentation and recognition,” presented at the
IEEE International Conference on Multimedia
and Expo, 2009. ICME 2009, Cancun, Mexico,
2009.

[22] P. N. Juslin and P. Laukka, ”Communica-
tion of emotions in vocal expression and music
performance: different channels, same code?,”
Psychological Bulletin, vol. 129, pp. 770-814,
September 2003.

[23] L. Lie, et al., ”Automatic mood detection and
tracking of music audio signals,” IEEE Trans-
actions on Audio, Speech and Language Pro-
cessing, vol. 14, pp. 5-18, January 2006.

[24] K. R. Scherer, ”Which Emotions Can be In-
duced by Music? What Are the Underly-
ing Mechanisms? And How Can We Measure
Them?,” Journal of New Music Research, vol.
33, pp. 239 - 251, 2004.

[25] C. Laurier, et al., ”Exploring Relationships be-
tween Audio Features and Emotion in Music
” presented at the 7th Triennial Conference of
European Society for the Cognitive Sciences of
Music (ESCOM 2009) Jyvaskyla, Finland 2009

[26] S. Giripunje and N. Bawane, ”ANFIS
Based Emotions Recognision in Speech,”
in Knowledge-Based Intelligent Information
and Engineering Systems, ed, 2009, pp. 77-84.

[27] A. V. Petrushin, ”Emotion in Speech: Recog-
nition and Application to Call Centers,” pre-
sented at the Conference on Artificial Neu-
ral Networks in Engineering (ANNIE 99), St.
Louis, Missouri, 1999.

[28] P. Chang-Hyun and S. Kwee-Bo, ”Emotion
recognition and acoustic analysis from speech

AES 132nd Convention, Budapest, Hungary, 2012 April 26–29

Page 10 of 11



Drossos et al. Emergency Voice/Stress-level Combined Recognition for Intelligent House Applications

signal,” in Neural Networks, 2003. Proceedings
of the International Joint Conference on, 2003,
pp. 2594-2598 vol.4.

[29] K. R. Scherer, ”Vocal Affect Signaling: A Com-
parative Approach,” in Advances in the Study
of Behavior. vol. Volume 15, J. S. Rosenblatt,
et al., Eds., ed New York, U.S.A.: Academic
Press, 1985, pp. 189-244.

[30] R. Banse and K. R. Scherer, ”Acoustic profiles
in vocal emotion expression,” Journal of Per-
sonality and Social Psychology, vol. 70, pp. 614-
636, 1996.

[31] T. L. Nwe, et al., ”Speech emotion recognition
using hidden Markov models,” Speech Commu-
nication, vol. 41, pp. 603-623, November 2003.

[32] J. Rong, et al., ”Acoustic feature selection for
automatic emotion recognition from speech,”
Information Processing & Management, vol. 45,
pp. 315-328, 2009.

[33] T. Ooura. (2006, 11 Nov.). FFT Package 1-dim
/ 2-dim. Available: http://www.kurims.kyoto-
u.ac.jp/ ooura/fft.html

[34] J. A. Russell, ”A circumplex model of affect,”
Journal of Personality & Social Psychology, vol.
39, pp. 1161-1178, 1980

[35] B. Schuller, et al., ”Acoustic emotion recog-
nition: A benchmark comparison of perfor-
mances,” in Automatic Speech Recognition &
Understanding, 2009. ASRU 2009. IEEE Work-
shop on, 2009, pp. 552-557.

[36] W.-J. Yoon and K.-S. Park, ”A Study of Emo-
tion Recognition and Its Applications,” pre-
sented at the Proceedings of the 4th interna-
tional conference on Modeling Decisions for Ar-
tificial Intelligence, Kitakyushu, Japan, 2007.

AES 132nd Convention, Budapest, Hungary, 2012 April 26–29

Page 11 of 11


