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Loudspeakers generally have boxes to prevent rear wave cancellation at low frequencies. However, the stiffness of the air in a 
small box reduces the diaphragm’s excursion at low frequencies. Hence the box size is generally a compromise between low 
frequency performance and practicality. Activated carbon has been found to increase the apparent size of a given box through 
adsorption of the air molecules when the pressure increases and likewise desorption when it decreases. However, the exact 
viscous effects in the granular structure are difficult to model. Thus it is impossible determine the high frequency limit due to 
the natural adsorption/desorption relaxation time in the absence of viscous losses. 
In this study, a tube model is presented which takes into account viscous and thermal losses with boundary slip together with 
adsorption. Impedance measurements are performed on an array of 12 million holes, each 2 micrometers in diameter, etched in 
a 0.25 mm thick silicon wafer so that the viscous and thermal losses can be verified against the model without adsorption. 
Impedance measurements are then performed on an array of holes coated with graphite in order to create an activated carbon-
like structure, thus enabling the adsorption/desorption relaxation time to be evaluated. 

 

1 Introduction 
In recent years, activated carbon has been used to reduce 
the size of hi-fi loudspeaker cabinets [1] and has been 
studied theoretically by Bechwati et. al..[2] It works by 
adsorbing air molecules when there is an increase in 
pressure and then releasing them again when the pressure 
falls. This reduces the net stiffness due to the air trapped in 
the cabinet and enables the loudspeaker diaphragm to move 
more freely at low frequencies. The net effect of this is to 
lower the fundamental resonant frequency, thus boosting 
the bass response of the loudspeaker. Alternatively, the 
cabinet size can be reduced without changing the resonant 
frequency. However, evidence so far suggests that the 
effect decreases rapidly above 150 Hz, thus rendering it 
unsuitable for mobile applications, where the fundamental 
resonance of the loudspeaker is typically in the range 700-
1000 Hz. Two effects determine this upper frequency limit. 
One is the natural adsorption/desorption relaxation time of 
the carbon itself and the other is the resistance due to 
viscous losses. The latter is a property of the structure of 
the material and the geometry of the path which the air has 
to take in order to reach the micro-pores. 
The purpose of this study is to create a model of a structure 
with a much simpler structure than typical granular 
activated carbon, namely a parallel array of micro-tubes 
etched in silicon and lined with graphite, which can then be 
measured in order to determine the unknown parameters 
such as the adsorption/desorption relaxation time and 
adsorption capacity. This is made possible by the fact that 
the other parameters, such as the viscous and thermal losses 
can be determined in advance using known equations [3] 
for a circular tube of radius a and length h with significant 
boundary slip. A lumped parameter model is developed for 
the tube together with formulas for the circuit elements. 
Veijola [4] reported similar formulas for a T-network 
model of a microchannel without adsorption, although the 
topology of the thermal conduction elements was slightly 
different. Specific impedance is used throughout, which is 
the ratio of the driving pressure to particle velocity at the 
mouth, so that the specific acoustic impedance of a single 
tube is the same as that of an array, except for a fill-factor 
which is the ratio of the total area of the tube entrances to 
the total area of the wall which they partially occupy. 
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Figure 1. Geometry of the tube model. 

2 Assumptions 
Each duct is modelled as a circular tube with a rigid end 
termination as shown in Figure 1, with z as the axial 
ordinate and w as the radial ordinate. The aspect ratio is 
such that end corrections are neglected. In the following 
discussion, it is assumed that the radial pressure distribution 
is constant and the pressure variations are purely axial. 
Also, it is assumed that the radial velocity is zero, but the 
axial velocity is allowed to vary radially due to laminar 
flow resulting from viscous losses. Thermal conduction 
through the tube wall is also taken into consideration. 
However, boundary slip is allowed for, whereby the axial 
velocity at the tube wall can be non-zero and the 
temperature there can be non-ambient. Finally, a model for 
air molecule adsorption and desorption resulting from the 
pressure fluctuations is included. Although adsorption will 
only occur at the tube wall, it is assumed that the air 
molecules are mobile enough for this to be treated as “bulk” 
adsorption throughout the tube. Considering that the 
average speed of an air molecule at room temperature is 
around 500 m/s, this seems a reasonable assumption. 

3 Wave equation for an infinite tube 
with adsorption 
3.1 Adsorption equation 
The adsorption dynamics equation is 

 ,)( adaa
a nknNPk

dt
dn

−−=  (1 ) 

where P is the pressure in the ducts, na is the number of 
adsorbed molecules per unit surface area, ka is the 
adsorption coefficient in Pa-1s-1, and kd is the desorption 
coefficient in s-1. N is the maximum number of adsorbed 
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molecules per unit surface area. The coefficients ka and kd 
are defined by 
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and 
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respectively where ca and cd are constants, m = 4.81 × 10-26 
kg is the mass of an air molecule, k is Boltzmann’s 
constant, R is the ideal gas constant, T0 = 295 K is the static 
temperature, and Ea and Ed are the activation energies of 
adsorption and desorption respectively. Although ka and kd 
are dependent upon temperature, they will be assumed to be 
constants for the purpose of this study. At equilibrium, 

where 0=
dt

dna , this leads to the Langmuir adsorption 

isotherm: 
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where e
an  is the number of adsorbed molecules at 

equilibrium and P0 = 105 N/m2 is the static pressure. We 
now redefine na, na

e and N as densities ρa, ρa
e and ρN 

respectively so that Eqs. (1 ) and (4 ) can be rewritten as 
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In order to define ρN, let a volume element of the tube be 
expressed as ΔV = πa2Δh, where a is the radius of the tube 
and Δh is the elemental length. Let n be the maximum 
number of molecules that can be adsorbed over the internal 
surface of the volume element as defined by hNan Δ= π2 . 
The maximum adsorbed density ρN and adsorbed density ρa 
are then ρN = nm/(ΔV) = 2Nm/a = 2σ/a, ρa = 2nam/a = 
2naσ/(Na) respectively, where σ = Nm = m/Sm is the surface 
mass density that can be accommodated, where Sm is the 
area occupied by each air molecule, which is assumed to be 
1.3 × 10-20 m2. Thus it can be seen that reducing the size 
and increasing the number of tubes increases the amount of 
air that can be adsorbed. We can linearize Eq. (5 ) by letting 
P = P0 + p and ρa = ρa

e + δa as follows: 
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where ωa is the adsorption-desorption cut-off frequency or 
inverse of the adsorption-desorption relaxation time given 
by 

 .0 daa kPk +=ω  (8 ) 

Replacing the time derivative with iω gives 
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where the tilde denotes a harmonically varying parameter 
after omitting the factor of eiωt. 

3.2 Momentum conservation equation 
In accordance with the conservation of momentum law, we 
can write the linearized Navier-Stokes equation [5] 
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where )/()/( 1222 www ∂∂+∂∂=∇ −  and u is the axial 
velocity, p is the axial pressure, ρ0 = 1.18 kg/m3 and μ = 
17.8 × 10-6 Ns/m2 are the density and viscosity of air 
respectively, and z is the axial ordinate. Replacing the time 
derivative with iω gives 
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where ./0 μωρikV −=  

3.3 Gas law and thermal conduction 
(entropy) 
For an ideal gas [5] 

 ,/)(~/~/~
000 TwPp τρδ +=  (12 ) 

where p~ , δ~  and τ~  are the small pressure, density and 
temperature fluctuations respectively. The equation for 
thermal conduction is 

 ),~/~()(~
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where κ = 25.4 × 10-3 N/s/K is the thermal conductivity. 
Eliminating δ~  from Eqs. (12 ) and (13 ) gives 
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We also note that )/( 000 TPCC VP ρ=−  so that 
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where the Pr is the (dimensionless) Prandtl number given 
by κμ /Pr CP = . 

3.4 Solution of the velocity and 
temperature radial equations 
Equations (11 ) and (15 ) for the radial velocity and 
temperature distributions respectively are subject to the 
following slip boundary conditions 

 ,)(~~
awua w

wuaBu =∂
∂−=  (16 ) 

 ,)(~~
awea w

waB =∂
∂−= ττ  (17 ) 

where the boundary slip factors Bu and Be are given by 

nuu KB )12( 1 −= −α , ( ) nere KPB )12()1(/2 1 −+= −αγγ . 
These formulas are the same as those of Kozlov et. al. [3] 
except that they omitted the minus signs. A few other minor 
errors in their derivation are also corrected here. We note 
that γ = CP/Cv is the specific heat ratio, αu and αe are the 
accommodation coefficients, both of which are assumed to 
have a value of 0.9, and Kn is the (dimensionless) Knudsen 
number given by Kn = λ/a, where λ = 60 nm is the 
molecular mean free path. Substituting 
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in Eqs. (11 ) and (15 ) respectively leads to a new pair of 
equations 

 ,0),,()( 22 =+∇ uVV BwkFk  (20 ) 

 ,0),,()( 22 =+∇ eTT BwkFk  (21 ) 

where VrT kPk = . Eqs. (20 ) and (21 ) are subject to the 
boundary conditions 
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Solutions to Eqs. (20 ) and (21 ) are given by 
 ),(),,( 0 wkAJBwkF VuV =  (24 ) 

 ).(),,( 0 wkBJBwkF TeT =  (25 ) 

The unknown coefficients can be found by substituting Eqs. 
(24 ) and (25 ) in the boundary conditions of Eqs. (22 ) and 
(23 ) respectively to give ( ) 1

10 )()( −−= akaJkBakJA VVuV  

and ( ) 1
10 )()( −−= akaJkBakJB TTeT . The average values 

across the tube cross-section are defined by 
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where ))(/()(2)( 01 xxJxJxQ =  and similarly 
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3.5 Mass conservation and Helmholtz 
wave equation 
Finally, we use the following mass conservation equation or 
equation of continuity [5] 
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For the average velocity, we can write from Eq. (18 ) 
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Differentiating Eq. (29 ) with respect to z and inserting it in 
Eq. (28 ) yields 
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where aδ
~  is given by Eq. (9 ). Also, from the gas law of 

Eq. (12 ) 
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where the average temperature is derived from Eq. (19 ) as 
follows 
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Substituting Eq. (32 ) in Eq. (31 ) while noting that 
)/( 000 TPCC vP ρ=−  and vP CC /=γ  gives 
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Equating Eqs. (30 ) and (33 ) then leads to the following 
Helmholtz wave equation 
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3.6 Dynamic density 
In order to simplify the wave number, we can use the 
following shorthand known as the dynamic density where 

u~  is given by Eq. (29 ) so that 
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3.7 Dynamic compressibility 
Also, the dynamic compressibility is defined by 
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From the ideal gas law of Eq. (33 ) we obtain 
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which, together with Eq. (9 ), is inserted in Eq. (37 ) to give 
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so that the wave number simply becomes 

 Ck ρω=  (40 ) 

and the characteristic specific impedance of an infinite tube 
is 

 ./0 CZ ρ=  (41 ) 

4 Finite blocked tube model 
The solution to Eq. (34 ) is of the form 

 ,~~)(~ ikzikz eBeAzp −+=  (42 ) 
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where z is the distance along the axis of the tube. From Eq. 
(36 ) the velocity is given by 

 ).~~()(~1)(~ ikzikz eBeAkzp
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If the tube is blocked at z = 0, then 0)0(~ =u  so that 

AB ~~ = . Also, if there is a piston at z = h with velocity 0
~u , 

then 0
~)/()sin  ~2()(~ ukhAikhu =−= ωρ  so that 
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This means that at z = h the pressure becomes 

 .cot  ~)(~
0 khu

ik
hp ωρ−=  (45 ) 

Hence the specific acoustic input impedance at the piston is 
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5 Short-Tube/Large-wavelength 
model 
The viscous boundary layer thickness is defined by 

 .)/( 0ωρμδ =visc  (47 ) 

Hence the frequency at (and below) which the boundary 
layer occupies the whole cross-section of the tube is given 
by 

 )./( 2
0aBL ρμω =  (48 ) 
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Figure 2. Blocked tube equivalent electrical circuit 

At low frequencies, a closed tube can be modeled using the 
equivalent electrical circuit shown in Figure 2 where 

 ),/( 00 PhC γ=  (49 ) 
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At low frequencies 

 ,1−+≈ CDI YZZ  (56 ) 

where the dynamic density impedance ZD is given by 
 0MiRZ VD ω+=  (57 ) 

and the dynamic compressibility admittance YC is given by 
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However, if ωBL > 10ωT, then for ω > 2ωT, cot kh → 1 and 
we have 
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where ωT is the transition frequency at which ZDYC = 1 and 
above which ZDYC > 1. These values are for the specific 
impedance, which is the ratio of pressure to particle 
velocity at the mouth. The capacitor C0 represents the 
compliance of the tube assuming adiabatic pressure 
fluctuations without any thermal conduction or 
adsorption/desorption. The capacitor CT represents the 
increase due to thermal conduction so that (C0 + CT) 
represents the total compliance assuming isothermal 
pressure fluctuations. In series with CT is a resistor RT 
representing the energy loss due to heat conduction through 
the wall. The capacitor CA represents the compliance due to 
adsorption and desorption. In series with it is a notional 
resistor RA representing the energy loss due to the 
adsorption/desorption relaxation time. The upper frequency 
limit fU at which adsorption is effective is 
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It can be seen that the compliance CA is maximum when kd 
= kaP0 and ρN >> ρ0. The ratio ρN /ρ0 is inversely 
proportional to the tube diameter. For a hexagonal array of 
holes, the fill factor, which is the ratio of the area covered 
by the holes to the total area, is given by 

 .
_3

2_
2

2

pitchhole
radiusfactorfill

×
×= π  (61 ) 

The specific impedance of such an array is then the 
impedance at the mouth each tube divided by the fill factor, 
as plotted in Figure 3 and Figure 4. 
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Figure 3. Specific acoustic impedance of array of tubes 

without adsorption, where a = 1 μm and h = 0.25 mm. Fill 
factor is 22.7 %. 
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Figure 4. Specific acoustic impedance of array of tubes 

with and without adsorption, where a = 1 μm, h = 0.25 mm, 
ka = 0.03 and kd = 3000. Fill factor is 22.7 %. 

6 The etching process 
Deep reactive ion etching (DRIE) using the BOSCH 
process allows the production of high aspect ratio structures 
in crystalline silicon wafers [6]. This is achieved by using a 
cyclical etching process. The areas of the sample that are 
not to be etched are protected by a layer of photoresist or 
other hard masking material (such as silicon dioxide). The 
sample is then loaded into a vacuum system and exposed to 
a dense plasma of SF6 gas. The SF6 plasma etches the 
exposed silicon very effectively, but also starts to undercut 
the masked area as shown in Figure 5. Therefore, after a 
few seconds, the SF6 plasma is replaced by a C4F8 plasma, 
which coats the exposed silicon in a thin polymer layer. 
After a few more seconds, the C4F8 plasma is replaced by 
the SF6 plasma once more. The SF6 plasma removes the 
protective polymer coating from the bottom of any exposed 
areas more quickly than on the side-walls, and so the etch 
only proceeds downwards. Therefore, by cycling these two 
plasmas, high aspect ratio structures may be produced in 
the silicon wafer, such as the micro-holes required in this 
work. 

SF6

C F4 8 SF6

1
2

Silicon substrate
Hard mask
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2

 
Figure 5. Schemetic diagram of the deep reactive ion 

etching process. 

7 Measurements 
Unfortunately, no results were available by the submission 
deadline for this paper at which time the maximum etch 
depth obtained was 60 μm before the photoresist finally 
expired. However, it is anticipated that with some improved 

etching techniques, measurements will be available by the 
time of the presentation. These will be made in a free field 
using a velocity transducer known as a “microflown” [7] in 
proximity to the duct openings in order to measure the 
particle velocity. A conventional pressure microphone will 
also be used in order to calculate the pressure to particle 
velocity ratio and hence specific acoustic impedance.  

8 Discussion and conclusion 
In the absence of measured results, the 
adsorption/desorption relaxation coefficients ka, kd and the 
area Sm occupied by each adsorbed molecule have been 
“guesstimated” for the simulation shown in Figure 4. In 
Figure 3, without adsorption, the imaginary impedance is 
reduced by a factor of 1/γ due to thermal conduction alone. 
In Figure 4, a greater reduction can be seen due to 
adsorption. In order to achieve a high cut-off frequency, it 
is desirable for ka and kd to be as large as possible and 
ideally kd ≈ kaP0 in order to maximize the compliance. 
These are dependent upon the adsorbing material used 
together with its lattice structure. Also, the compliance 
increases with the adsorption capacity ρN, which is 
proportional to the adsorption surface area and is thus a 
function of the tube diameter as well as depending upon Sm, 
which is a material property. More experimental work 
needs to be done to determine the values of these 
parameters for other materials. 
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