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Abstract—Recent approaches for music source separation
are almost exclusively based on deep neural networks, mostly
employing recurrent neural networks (RNNs). Although RNNs
are in many cases superior than other types of deep neural
networks for sequence processing, they are known to have specific
difficulties in training and parallelization, especially for the
typically long sequences encountered in music source separation.
In this paper we present a use-case of replacing RNNs with depth-
wise separable (DWS) convolutions, which are a lightweight and
faster variant of the typical convolutions. We focus on singing
voice separation, employing an RNN architecture, and we replace
the RNNs with DWS convolutions (DWS-CNNs). We conduct an
ablation study and examine the effect of the number of channels
and layers of DWS-CNNs on the source separation performance,
by utilizing the standard metrics of signal-to-artifacts, signal-to-
interference, and signal-to-distortion ratio. Our results show that
by replacing RNNs with DWS-CNNs yields an improvement of
1.20, 0.06, 0.37 dB, respectively, while using only 20.57% of the
amount of parameters of the RNN architecture.

Index Terms—Depthwise separable convolutions, recurrent
neural networks, mad, madtwinnet, monaural singing voice
separation

I. INTRODUCTION

The task of audio source separation is to extract the

underlying audio sources from an observed audio mixture.

A particular problem that has attracted great attention in

audio and music source separation, is the estimation of the

singing voice and accompaniment sources [1]. To address this

problem, a common and successfully employed work flow,

consists of computing non-negative signal representations, and

employing deep neural networks (DNNs) to estimate the target

sources.

Although different methods have been recently proposed for

computing and learning signal adaptive/dependent represen-

tations for source separation [2]–[4], the short-time Fourier

transform (STFT) remains a popular choice among state-of-

the-art (SOTA) approaches in music source separation [5]–
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[9]. Specifically, by using the STFT, the complex valued

representation of the mixture signal is computed. Then, the

corresponding magnitude information of the mixture signal is

processed by an appropriated method, e.g. DNNs, yielding the

magnitude information of the target source. Using the phase

information of the mixture, the time-domain signals of the

estimated sources are recovered by means of the inverse STFT

(ISTFT).

Focusing on the DNNs that estimate the target source in the

STFT domain, a certain approach that state-of-the-art methods

employ is that of filtering/masking. This approach, enforces

DNNs to output filters that are optimized for separating audio

and music sources, and has led to good results for both

separation quality [5], [7], [8] and computational costs [9].

In more details, DNNs are conditioned on the mixture signal

magnitude spectrogram and are optimized, in a supervised

fashion, to yield a time-varying filter, i.e., a time-frequency

mask. The time-frequency mask is applied to the input mixture

spectrogram, resulting into a filtered version of the input mix-

ture. The parameters of the DNNs are optimized to minimize

the difference between the filtered and the targeted source

spectrograms, available in the training dataset. The main

benefit of employing such approach versus other approaches is

that the DNNs are more efficient in learning the spectrogram

structure of the target music source [10].

Typical DNN masking-based approaches for music source

separation rely on recurrent neural networks (RNNs) to encode

information from the mixture magnitude spectrogram [5],

[6], [8], that is then decoded to obtain the source-dependent

mask. However, many previous works have highlighted that

the optimization of the DNNs could be difficult, due to the

involved RNNs, resulting into a very slow, or even sub-

optimal learning process. A few reasons to that are improper

gradient norms of the RNN parameters during training [11],

and the large number of parameters RNNs require to efficiently

process long sequences [12]. Although techniques, such as

skip-connections [12], bi-directional sequence sampling [12],

and regularization schemes [13] have been proposed to al-
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leviate the above severe issues, CNNs have an increased

popularity [7], [14]–[16]. In contrast to RNNs, CNNs have

fewer parameters and can be easily parallelised, resulting into a

faster learning process. Furthermore, recent works have shown

that depth-wise separable CNNs can even perform better than

typical CNNs in a wide range of applications spanning from

image recognition [17] to sound event detection [16] and

speech [18] and music source separation [15].

Because of the above, in this work we conduct an ablation

study and examine the objective performance differences in

singing voice separation, by replacing the RNNs with depth-

wise separable CNNs. To that aim, we particularly focus on

the Masker and Denoiser (MaD) architecture presented in

the following works [5], [6], [19]. We do so because MaD

architecture incorporates the RNN techniques that have been

previously presented in [6] and in [5], serving a fair, yet

competitive baseline for the scope of this work.

The rest of the paper is organized as follows. In Section II

we present our proposed method, consisting of the replace-

ment of RNNs with depth-wise separable convolutions at the

MaD architecture. In Section III we presented the followed

evaluation procedure, and the obtained results are presented

in Section IV. Section V concludes the paper.

II. PROPOSED METHOD

Our method accepts as an input the magnitude spectrogram

V ∈ R
T+L×F
≥0

of the musical mixture, consisting of T+L time

frames with F frequency bands, and outputs the magnitude

spectrogram V̂j ∈ R
T×F
≥0

of the j-th targeted source, by

applying a two-step process. First, our method filters V,

producing an initial estimate of the magnitude spectrogram

of the j-th source, V̂′
j ∈ R

T×N
≥0

, where the extra L vectors

of V are used as temporal context for the initial estimate V̂
′
j .

Then, our method enhances V̂
′
j , producing the final estimate

of the magnitude spectrogram of the j-th source, V̂j .

Our proposed method in based on the MaD system [5], [6],

[19], which takes as an input V and employs two denoising

auto-encoders (DAEs), one for estimating V̂
′
j , and one for

calculating V̂j . The first DAE in MaD is based on RNNs,

which are known to be hard to use for parallelized training,

and more hard to optimize than CNNs [16], [20], [21].

A. MaD system

MaD consists of two modules; the masker and the denoiser.

The masker accepts as an input V and outputs V̂
′
j , and it

consists of a trimming operation, Tr, a bi-directional RNN

encoder, RNNenc, a unidirectional RNN decoder, RNNdec, and

a feed-forward layer, FNNm.

The trimming operation, Tr, takes as an input V and

reduces the amount of frequency bands from F to N , resulting

in Vtr ∈ R
T+L×N
≥0

. This is done in order to reduce the input

dimensionality of RNNenc, consequently reducing the amount

of parameters of RNNenc. Though, the complete V will be

used later on, after the RNNenc. The bi-directional RNNenc

consists of a forward RNN,
−−→
RNNenc, and a backward RNN,

←−−
RNNenc, takes as an input Vtr and processes it according to

−→
h

′t′

enc =
−−→
RNNenc(v

t′

tr ,
−→
h

′t′−1
enc ) and (1)

←−
h

′t′

enc =
←−−
RNNenc(

←−
v

t′

tr ,
←−
h

′t′−1
enc ), (2)

where
−→
h

′t′

enc,
←−
h

′t′

enc ∈ [−1, 1]2N are the latent outputs of
−−→
RNNenc and

←−−
RNNenc, respectively, at the t′-th time frame, t′ =

1, . . . , T + L,
−→
h

′0
enc =

←−
h

′0
enc = {0}

N , ←−v t′

tr is the time-flipped

(i.e. backwards) version of Vtr, and H
′
enc = [h′1

enc, . . . ,h
′T+L
enc ].

Bi-directional RNNenc is used to encode the input magnitude

spectrogram, using extra information from the L temporal

content vectors. The output of the encoder H
′
enc, is summed

with the input V, using residual connections as

Henc = H
′
enc + [V⊤

tr ,
←−
V

⊤
tr ]

⊤, (3)

where
←−
V tr is the magnitude spectrogram Vtr flipped in time

(i.e. backwards) and Henc ∈ R
T+L×2N . Finally, the extra L

time-frames are dropped from Henc, so the subsequent decoder

will be able to focus on the time frames that correspond to

the targeted output, as

Henc-tr = [h⌊L/2⌋
enc , . . . ,hT+⌊L/2⌋

enc ], (4)

where h
i
enc ∈ [−1, 1]N is the i-th vector of Henc and ⌊·⌋ is

the floor function. Henc-tr is used as an input to RNNdec of

masker, obtaining Hdec as

h
t
dec = RNNdec(h

t
enc-tr,h

t−1

dec ), (5)

where h
t
dec is the latent output of the RNNdec at the t-

th time-frame, t = 1, . . . , T , h
0
dec = {0}N , and Hdec =

[h1
dec, . . . ,h

T
dec]. Hdec is given as an input to a feed-forward

linear layer with shared weights through time, followed by a

rectified linear unit (ReLU) as

h
t
m = ReLU(FNNm(h

t
dec)), (6)

where h
t
m ∈ R

F
≥0 and Hm = [h1

m, . . . ,h
T
m ]. Finally, the output

of the masker, V̂′
j , is calculated as

V̂
′
j = V

′ ⊙Hm, (7)

where “⊙” is the Hadamard product and V
′ =

[v⌊L/2⌋, . . . ,vT+⌊L/2⌋] is a time-trimmed version of the

input magnitude spectrogram V (i.e. before the trimming

process Tr).

The denoiser, accepts as an input the V̂
′
j and outputs V̂j ,

and it consists of two feed-forward layers with shared weights

through time and functioning as an auto-encoder, FNNd1 and

FNNd2, where each one is followed by a ReLU. Specifically,

the first layer, FNNd1, process the input to the decoder as

h
t
d1 = ReLU(FNNd1(v̂

′t
j )), (8)

where h
t
d1 ∈ R

⌊F/2⌋
≥0

and Hd1 = [h1
d1, . . . ,h

T
d1]. Then, the

second layer, FNNd1, process Hd1 as

h
t
d2 = ReLU(FNNd2(h

t
d1)), (9)



where h
t
d2 ∈ R

F
≥0 and Hd2 = [h1

d2, . . . ,h
T
d2]. The output of

the denoiser, V̂j is calculated as

V̂j = V̂
′
j ⊙Hd2. (10)

Finally, the masker and the denoiser are jointly optimized

by minimizing

L =DKL(Vj || V̂
′
j) +DKL(Vj || V̂j)

+ λ1|diag{WFNNm
}|1 + λ2||WFNNd2

||22, (11)

where Vj is the targeted magnitude spectrogram of the j-th

source, DKL is the generalized Kullback-Leibler divergence,

λ1 = 1 × 10−2 and λ2 = 1 × 10−4 are regularization terms,

| · |1 is the ℓ1 vector norm, and || · ||22 is the L2 matrix norm.

diag{WFNNm
} is the main diagonal of the weight matrix of

the FNNm (i.e. the elements wij of WFNNm
with i = j).

More information about the specific regularizations terms and

optimization process, can be found at the original MaD and

the MaDTwinNet papers [5], [19].

B. Replacing RNNs

In our proposed method, we replace the bi-directional

RNNenc and the unidirectional RNNdec with two sets of convo-

lutional blocks, CNNenc and CNNdec, respectively. Following

recent and SOTA published work [16], we opt to employ

depth-wise separable (DWS) convolutions and not typical

convolutions for our CNN blocks. The DWS convolution is a

factorized version of the typical convolution, that first applies a

spatial-wise convolution, and then a channel-wise convolution.

The spatial-wise convolution learns spatial relationships in the

input features to the convolution. The channel-wise convolu-

tion, learns cross-channel relationships between the channels

of the spatial-wise convolution.

Specifically, each DWS convolution block of our method

consists of a CNN (the spatial-wise convolution CNNd),

followed by a leaky ReLU (LReLU), a batch-normalization

process, another CNN (the channel-wise convolution CNNs),

and a ReLU, as

H = ReLU(CNNs(BN(LReLU(CNNd(X))))), where (12)

D
ci,xh−Kh,xw−Kw =CNNd(X

ci ;Kci

d )

=(Kci

d ∗X
ci)(xh −Kh, xw −Kw)

=

Kh
∑

kh=1

Kw
∑

kw=1

X
ci,xh−kh,xw−kwK

ci,kh,kw

d ,

(13)

H
co,φh,φw =CNNs(D

:,φh,φw ;Kco
s )

=

Ci
∑

ci=1

D
ci,φh,φwK

co,ci
s , (14)

LReLU(x) =

{

x, if x ≥ 0,

βx otherwise
, (15)

BN is the batch normalization process, ∗ indicates convolution,

D ∈ R
C′

i
×Φh×Φw and Kd ∈ R

Ci×Kdh×Kdw are the output

and kernel tensors of CNNd, respectively, H ∈ R
Co×Φ

′

h
×Φ

′

w

and Ks ∈ R
Co×Ci are the output tensor and kernel matrix

of CNNs, respectively, and β < 1 is a hyper-parameter.

Eq. (13) is used to learn the spatial relationships of the

data X ∈ R
Ci×Xh×Xw , and Eq. (14) is used to learn the

cross-channel relationships. We employ LReLU according to

previous studies using depth-wise separable convolutions [16].

Our CNNenc consists of one DWS convolution block that

is followed by a batch normalization process, a max-pooling

operation, and a dropout with penc probability, and then of Lenc

DWS convolution blocks, with each block followed by a batch

normalization process and a dropout with probability penc (but

no max-pooling operation). The output of each of the Lenc

DWS convolution blocks has the same dimensionality as the

input. That is, at each of the Lenc DWS convolution blocks,

we utilize proper zero padding (i.e. depending on the kernel

size) in order not to alter the dimensions of the input. Each

block of CNNenc gets as an input the output of the previous

one, the first gets as an input V, and the last outputs the tensor

H
Lenc ∈ R

Cenc×Henc×Wenc

≥0
.

CNNdec consists of a transposed convolution, followed by

two DWS convolution blocks, batch-normalization and max-

pooling processes, a dropout with probability pdec, a CNN,

and the FNNenc. The transposed convolution of CNNdec gets

as an input the H
Lenc , and the FNNenc outputs Hm. Finally, the

output of the masker of our method is calculated according

to Eq. (7). The final audio signal of the output is calculated

according to the original MaD paper [5].

III. EXPERIMENTAL PROCEDURE

A. Dataset and pre-processing

We use the development sub-set of Demixing Secret

Dataset1 (DSD100) for optimizing the parameters of the pro-

posed method, in a supervised fashion. From each multi-track

we compute a monaural version of each of the four sources, by

averaging the two available channels. Then, we compute the

STFT of each monaural signal using a Hamming window of

2049 samples (46ms) over a step size of 384 samples (8ms).

Each windowed segment is zero-padded to 4096 samples.

After the STFT, we remove the redundant information of

the STFT retaining the first N = 2049 frequency bands,

and then compute the absolute values. Then the magnitude

spectrogram of the mixture and singing voice are segmented

into B = ⌈M/T ⌉ sequences, with T being the length of the

sequence, and ⌈·⌉ is the ceiling function. Each sequence b
is employed as our V and Vj , for the mixture and target

source respectively, and overlaps with the preceding one by

an empirical factor of L × 2. The overlap factor is used for

aggregating context information in the previously described

stages of encoding.

B. Hyperparameters and training of proposed method

We evaluate our method by conducting an ablation study,

employing different amounts of CNNenc blocks, Lenc, and dif-

ferent number of channels, Co, for our convolutional kernels.

1http://www.sisec17.audiolabs-erlangen.de
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TABLE I
SDR, SIR, AND SAR VALUES, AND AMOUNT OF PARAMETERS (NPARAMS ) FOR THE DIFFERENT AMOUNTS OF CNNenc BLOCKS (Lenc) AND CHANNELS OF

THE CORRESPONDING KERNEL (Co). VALUES OF SDR, SIR, AND SAR ARE PRESENTED IN dB. WITH BOLD FONTS ARE THE VALUES FOR THE

COMBINATION OF Lenc AND Co , THAT YIELDS THE BIGGER SDR.

SDR SIR SAR NparamsNparamsNparams

Value of Lenc

Value of Co
64 128 256 64 128 256 64 128 256 64 128 256

5 4.47 4.84 4.91 8.11 8.07 8.59 6.71 6.74 6.98 4 783 426 4 922 754 5 447 170
7 4.44 4.65 4.94 7.83 8.23 8.23 6.67 6.91 7.15 4 795 586 4 963 458 5 594 114

9 4.46 4.57 4.88 8.14 8.06 8.44 6.45 6.59 6.95 4 807 746 5 004 162 5 741 058
11 4.46 4.64 4.83 8.03 8.77 8.98 6.39 6.84 8.98 4 819 906 5 044 866 5 888 002
13 4.59 4.80 4.72 8.17 9.02 8.41 6.40 6.56 6.97 4 832 066 5 085 570 6 034 946
15 4.39 4.58 4.76 8.77 8.41 8.60 6.20 6.61 7.01 4 844 226 5 126 274 6 181 890

Specifically, we employ six different number of Lenc, namely

5, 7, 9, 11, 13, and 15, and three different Co, namely 64,

128, and 256. We indicate the amount of Lenc and Co, using

a subscript, e.g. CNNenc-5,64 for the Lenc = 5 and Co = 64
combination. All DWS convolution blocks of CNNenc have

a square kernel of Kdh = Kdw = 5. At the CNNdec we

utilize the same Co amount of channels with the CNNenc,

Kdh = Kdw = 5, and a unit stride, and β = 1e−2. The values

for Kdh and Kdw are chosen according to previous work that

employed DWS convolutions [16] and the value for β as the

default value for the LReLU in the PyTorch framework.

We optimize the parameters of our method following the

approach in the original papers of MaD [6], [19], using 100

epochs on the training dataset, with a batch size of 4. We

utilized the Adam optimizer for updating the weights of our

method, with a learning rate of 1e-4 and for betas we used

the values proposed in the original corresponding paper [22].

Additionally, we employ a clipping of the gradient L2 norm

equal to 0.5, similar to the training process of the original

MaD system. The above are implemented using the PyTorch

framework, and our code is freely available online2.

C. Objective Evaluation

We compare our method with an established masking based

approach to singing voice separation, denoted as the Masker

and Denoiser (MaD) architecture and friends, namely the MaD

TwinNet [5] and the MaD architecture with the recurrent

inference algorithm [6]. The length of the sequences for the

MaD and friends is set to T = 60 timeframes, according

to the corresponding papers [5]. We focus on those two

particular approaches because to the best of our knowledge

those approaches are the only ones that do not estimate all

the other music sources in an attempt to re-fine the estimated

singing voice signal [6]–[8], [16]. This allows us to clearly

examine the potentials of using depth-wise separable convolu-

tional networks for masking based approaches to singing voice

separation. For assessment, the evaluation subset of DSD100

(50 mixtures and corresponding sources) is used for measuring

the objective performance of our method, in terms of signal-to-

distortion (SDR), signal-to-interference (SIR), and signal-to-

artifacts (SAR) ratios. The computation of SDR, SIR, and SAR

for all the compared methods is performed over overlapping

2https://github.com/pppyykknen/mad-twinnet

TABLE II
COMPARISON OF OUR PROPOSED METHOD WITH MAD, ON DSD DATASET.

VALUES OF SDR, SIR, AND SAR ARE PRESENTED IN DB. NPARAMS-M IS

THE AMOUNT OF PARAMETERS FOR MASKER. RESULTS OF MAD ARE

TAKEN FROM THE LITERATURE.

Approach SDR SIR SAR Nparams-MNparams-MNparams-M

MaD [6] 3.62 7.06 5.88
22 996 113MaD-Rec.Inferece [6] 4.20 7.94 5.91

MaDTwinNet [5] 4.57 8.17 5.95

CNNenc-7,256 4.94 8.23 7.15 1 394 689

signal segments, following the proposed rules of the official

Signal Separation and Evaluation Campaign (SiSEC) [23].

IV. RESULTS AND DISCUSSION

In Table I are amount of parameters and the obtained values

for the SDR, SIR, and SAR versus the different Lenc and Co.

From that table, it can be seen that the increase of Co has a

bigger impact to the obtained SDR, SIR, and SAR, compared

to the increase of Lenc. That is, the increase at the amount of

channels benefits more the obtained SDR, SIR, and SAR, than

the increase of the depth of the CNNs. Though, this benefit

from Co could be attributed to the more pronounced effect that

Co has on Nparams. From Table I, it can be seen that the increase

of Co has more impact on the total amount of parameters

Nparams, than increasing Lenc. Regarding the best performing

combination, we focus on the SDR and we consider as best

performing the combination of Lenc = 7 and Co = 256.

To evaluate the benefit of our proposed method compared to

the usage of RNNs, we compare our results with the vanilla,

with recurrent inference, and with twin networks variants of

the MaD system. In Table II are the SDR, SIR, and SAR

values of the best performing combination according to SDR

and Table I (i.e. CNNenc-7,256), compared to the values for the

same metrics obtained from MaD system. Additionally, since

one of the main benefits of DWS convolutions is that they

have quite few parameters, we also list in Table I the amount

of parameters of the Masker. We do not list the parameters for

the Denoiser, since the Denoiser is the same in all the listed

systems in Table I. For reference, the amount of parameters

of the Denoiser is 4 199 425.

As can be seen from Table II, our proposed method sur-

passed all variants of the MaD system, while, at the same

time, it has only 6% of the parameters at the Masker (i.e.

https://github.com/pppyykknen/mad-twinnet


94% reduction) compared to MaD. Specifically, we achieve

an increase of 0.37 dB, 0.06 dB, and 1.20 dB for SRD, SIR,

and SAR, respectively, when using our method and compared

to the MaD system trained with the TwinNet regularization

(i.e. MaD TwinNet), which is the best performing variant of

MaD. As can be seen, the improvement is mainly attributed on

the reduction of artifacts in the separated signal (i.e. increase

in the SAR). This indicates that the replacement of the RNNs

with DWS convolutions can result in signals that have less

distortion from the separation method [24].

Finally, comparing Tables I and II, we can see that with our

method, with Lenc = 5 and Co = 64, we can use the 2.54%

of the parameters of the Masker, and still have an increase of

0.76 dB at the SAR, while having a marginal reduction of 0.10

dB and 0.06 dB at SDR and SIR, respectively. Basically, this

means that with our method we can significantly reduce the

parameters of the Masker by 97.5%, while still getting some

improvement at the reduction of distortion from the separation

method (i.e. increase at the SAR). In terms of the amount of

total parameters, with the best performing combination of our

method, CNNenc-7,256, we get a reduction of 79.43% (i.e. we

use only 20.57% of the total MaD parameters), and with the

CNNenc-5,64 we get a reduction of 82.41% (i.e. we use only

17.59% of the total MaD parameters).

V. CONCLUSIONS

In this work we examined the effect in objective separa-

tion performance of replacing RNNs with with depth-wise

separable (DWS) CNNs. To assess our proposed approach,

we focused on the singing voice separation task and we em-

ployed a SOTA performing architecture for monaural singing

voice separation that is based on RNNs, we implemented

our proposed replacements, and we evaluated the performance

of the method with the replacements using an established

and freely available dataset for music source separation. We

evaluated the performance of the singing voice separation

using the widely employed source separation metrics of signal-

to-distortion (SDR), signal-to-artifacts (SAR), and signal-to-

interference (SIR) ratios. The results show a clear benefit of

using our approach, both in the performance and the total

amount of parameters needed. Specifically, with our approach

we managed to reduce the amount of total parameters by

79.43%, and achieve an increase of 0.37 dB, 0.06 dB, and

1.20 dB at SDR, SIR, and SAR, compared to the original

method with RNNs. For future work, we intend to examine

the usage of dilated convolutions, in order to exploit the strong

temporal context of music (e.g. melody). Additionally, further

investigation could be carried, regarding the benefit or having

a bigger kernel at the channel-wise convolution, in the depth-

wise separable convolution.
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