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ABSTRACT

Audio captioning is a multi-modal task, focusing on using natural
language for describing the contents of general audio. Most audio
captioning methods are based on deep neural networks, employ-
ing an encoder-decoder scheme and a dataset with audio clips and
corresponding natural language descriptions (i.e. captions). A sig-
nificant challenge for audio captioning is the distribution of words
in the captions: some words are very frequent but acoustically non-
informative, i.e. the function words (e.g. “a”, “the”), and other
words are infrequent but informative, i.e. the content words (e.g.
adjectives, nouns). In this paper we propose two methods to mit-
igate this class imbalance problem. First, in an autoencoder set-
ting for audio captioning, we weigh each word’s contribution to the
training loss inversely proportional to its number of occurrences in
the whole dataset. Secondly, in addition to multi-class, word-level
audio captioning task, we define a multi-label side task based on
clip-level content word detection by training a separate decoder. We
use the loss from the second task to regularize the jointly trained en-
coder for the audio captioning task. We evaluate our method using
Clotho, a recently published, wide-scale audio captioning dataset,
and our results show an increase of 37% relative improvement with
SPIDEr metric over the baseline method.

Index Terms— audio captioning, Clotho, multi-task, regular-
ization, content words, infrequent classes

1. INTRODUCTION

Audio captioning is the novel task of automatically generating tex-
tual descriptions (i.e. captions) of the contents of general audio
recordings [1, 2]. Audio captioning started in 2017 [3], and it can
be considered as an inter-modal translation task, where the humanly
perceived information in the audio signal is translated to text. For
example, given an audio recording, a caption can be “the wind blows
while cars are passing by” or “a man alternates between talking and
flapping a piece of cloth in the air three times”1.

Existing audio captioning methods are deep neural net-
works (DNNs) based, mostly employing the sequence-to-sequence
paradigm. An encoder gets as an input the audio sequence, pro-
cesses it, and outputs a sequence of learned feature vectors. Then,
the output sequence of the encoder is aligned with the targeted out-
put sequence of the decoder, typically by two alternative methods.
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1Actual captions from Clotho dataset.

The first, is the one proposed in [4], where the encoder outputs a
fixed length vector, and this vector is used as an input to the de-
coder and for every time-step of the output sequence. The second
method for sequence alignment, is through the attention mechanism
proposed in [5], where for each time-step of the output sequence,
the alignment mechanism calculates a weighted sum of the output
sequence of the encoder, conditioned on the state of the decoder.
For example, in [3] the method uses an encoder-decoder scheme,
utilizing a multi-layered and recurrent neural network (RNN) based
encoder and an RNN-based decoder. The encoder gets as an input
the audio signal, and its output is processed by the attention mech-
anism presented in [5]. The output of the attention mechanism is
used as an input to an RNN-based decoder, followed by a classifier
which outputs the predicted words at each time-step of the output
sequence. Study [6] presents another method, where the input se-
quence is encoded to a fixed length vector, through an RNN-based
encoder and by a time-averaging of the output of the encoder. Then,
the fixed length vector is used as an input to an RNN-based decoder,
for every time-step of the output sequence, similarly to [4]. Again,
a classifier predicts the output words. In addition, the work in [7]
presents an approach where a VGGish encoder is used to process
the input audio sequence. The output of the VGGish-based encoder
is processed by an attention mechanism, and a sub-sequence RNN-
based decoder followed by a classifier, outputs the predicted words.
Finally, an autoencoder with attention mechanism is also employed
in [1] for establishing initial results for the audio captioning dataset
called Clotho. Clotho is a novel audio captioning dataset, em-
ploying around 5000 clips with five captions for each audio clip,
amounting to a total of around 25 000 audio clips and caption ex-
amples. Clotho is built with emphasis on diversity and robustness,
utilizing established good practises for dataset creation from the ma-
chine translation and image captioning communities [1, 2]. Clotho
offers captions that are sanitized from speech transcription, typos,
and named entities, provides splits with no hapax-legomena (i.e.
words appearing only once in a split) [8] and it is used in the audio
captioning task of the DCASE 2020 challenge2.

Though, in many natural language-based datasets (like Clotho)
it is observed that there is a typical class imbalance [9, 10]. The
function words, i.e. the articles (e.g. “a”/“an”, “the”), prepositions
(e.g. “in”, “over”, “from”, “about”), and conjunctions (e.g. “and”,
“or”, “the”, “until”) appear in overwhelming amounts compared to
the other words, i.e. the content words. The frequency of appear-
ance of content words, most likely will cause the common machine

2http://dcase.community/challenge2020/
task-automatic-audio-captioning
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learning optimization methods, such as gradient descent, to over-
fit to them, since they are the ones that affect the most to the loss
function. This is especially undesirable for audio captioning in two
major ways. Function words most often do not possess any infor-
mation about the audio content, which makes it even harder to map
the acoustic features to these most common words, i.e. classes. In
addition, the class imbalance between function and content words,
prevents the learning of the acoustically more informative, content
words, since they contribute less to the total learning loss. On the
other hand, a valid caption generated by an automatic audio cap-
tioning system must anyway include the function words in the ap-
propriate places to be grammatically correct.

To tackle the above, we draw inspiration from traditional nat-
ural language processing techniques. Specifically, we consider
the cases where the class imbalance between function and con-
tent words is treated with employing weights of the loss for the
words [9, 11], and we propose a novel regularizing method for the
encoder that process the audio sequence, employing a data pre-
processing and a multi-task learning set-up. We first identify the
function and content words. Then, additionally to the task of pre-
dicting the proper sequence of words (i.e. caption) for a given audio
input, we utilize an extra learning signal for the encoder. This signal
emerges from an extra decoder followed by a classifier, which try to
predict the content words for the corresponding input.

The rest of the paper is organized as follows. In Section 2 is our
proposed method and Section 3 describes the followed evaluation
procedure. The obtained results and their discussion are in Sec-
tion 4. Section 5 concludes the paper and proposes future research
directions.

2. PROPOSED METHOD

The proposed method consists of two stages: feature and target ex-
traction, and deep learning based sequence-to-sequence classifier.
Given an audio recording, our method first extracts the acoustic fea-
tures, and then uses a recurrent neural network based autoencoder
with two separate decoders to generate an audio content descrip-
tion as a sentence. While the system is trained with both caption
decoder and content word decoder, only caption decoder is used to
obtain the generated content description. The system overview is
given in Figure 1.

The proposed method is based on the baseline system for au-
dio captioning task of the DCASE 2020 challenge2, and includes
several extensions to this work. In order to alleviate the class im-
balance problem on the learning of acoustically informative words,
we propose two main extensions: multi-task regularization based
on content words, and loss weighting based on word frequency. For
the rest of the paper, these methods are referred as CWR-CAPS
(content word regularized captioning system) and CWR-WL-CAPS
(content word regularization with weighted loss captioning system).
The open-source code repository for this work, written as an exten-
sion to official challenge baseline system, is available in 3.

2.1. Feature and target extraction

We use log mel band energies as acoustic features. Since Clotho
dataset comes with varying length audio recordings, zero-padding
is applied at the end for the shorter recordings in each batch. As

3https://github.com/emrcak/dcase-2020-baseline/
tree/sed_caps

a result, the acoustic features X ∈ RN×T for each recording are
obtained, where N is the number of bands, and T is the maximum
number of frames in a recording for a given batch.

Each caption is pre-processed by making all the words lower-
case, removing the punctuation and adding start- and end-of-
sequence tokens ([SOS] and [EOS]). The target outputs for captions
of a recording is a matrix Y ∈ RK×T ′

, where K is the number of
unique words in the dataset including [SOS] and [EOS], and T ′ is
the length of the longest caption target output vector in a batch.
Each column of Y is a one-hot vector representing the index of a
word in the caption at each timestep. Similar with the input features,
the target output length is varying among the recordings, therefore
the shorter target outputs in each batch are padded with [EOS] to-
kens.

We define a second set of the target outputs for audio caption-
ing, namely content words, to be used to introduce regularization
over the encoder outputs. The content words are defined as the set
of words in the given dataset of captions, excluding the prepositions,
articles, conjunctions and auxiliary verbs. The list of content words
used in this work can be found in the open-source code repository 3.
As a result, for each given caption, we obtain a multi-label encoded
binary content word vector y′ ∈ RK′

. If the ith content word is
present in the caption, then y′i is set to 1, and 0 vice versa.

2.2. Sequence-to-sequence classifier

The proposed method is a sequence-to-sequence deep learning clas-
sifier with two sets of target outputs: captions and content words.
The input to the system is log mel band energy features. This input
is fed to an encoder block which consists of bidirectional Gated Re-
current Unit (GRU) [12] layers. Dropout [13] is applied after each
GRU layer.

The output of the encoder is then fed to two separate decoder
branches, namely caption decoder and content word decoder. The
difference between captions and content words, and how the con-
tent words are obtained are explained in Section 2.1. Both decoder
blocks include a single unidirectional GRU layer, and a fully con-
nected (FC) layer. The FC layers in both decoder blocks apply the
same set of weights over the RNN outputs at each timestep.

The differences between the caption and content word decoder
processes are as follows. The main difference is the nonlinearity
applied to the weighted outputs. In the case of caption decoder, the
FC layer nonlinearity is softmax, whereas for the content word de-
coder, it is sigmoid function to allow multiple content word outputs
being detected for the same input. Another difference is that the fi-
nal outputs for the content word decoder are collapsed in time axis
by taking the maximum value over time, in order to obtain a sin-
gle probability vector for the whole recording. The caption decoder
outputs are also treated as probabilities at the frame level, where
each column represents the probabilities of the words at a given
frame (timestep). During inference, the caption decoder output is
determined as the word with the highest probability at each time
step.

2.3. Training

The sequence-to-sequence classifier is trained using Adam gradient
optimizer [14]. The upper boundary of the squared norm of the gra-
dients is selected as 1 to prevent exploding gradients. The classifier
is trained using a patience scheme, where the training is aborted
if the SPIDEr metric (explained in Section 3.2) for the evaluation
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Figure 1: System overview.

dataset does not improve for certain number of epochs. As the final
model, we use the model from the epoch with the best validation
SPIDEr score.

Weighted non-negative log likelihood and cross-entropy loss
are used as objective loss functions for caption decoder and con-
tent word decoder outputs, respectively. The purpose of using the
additional loss from the content words is to regularize the encoder to
produce intermediate representations that contain more information
on the content words. Our empirical analysis show that the mag-
nitude of loss corresponding to the content words is consistently
about 10% of the captioning loss over the training. Therefore, this
additional loss does not dominate the whole training and can indeed
be seen as acting as a regularizer over the encoder.

The class weights for the non-negative log likelihood loss of the
caption decoder output are determined as inversely proportional to
the amount of each word’s occurrences in the development dataset.
This leads the classifier to avoid overfitting on more common but
less informative words, due to their smaller weight on the total
loss function. This method also provides a better matching with
some of the commonly used captioning evaluation metrics such as
CIDEr [15], which uses Term Frequency Inverse Document Fre-
quency (TF-IDF) [16] weighting that puts more emphasis on the
detection of the less common words.

2.4. Other changes to baseline method

Apart from the proposed content word based regularization and
weighted loss schemes, there are a few additional changes made
to baseline system. For the baseline system, the input features from
the shorter (in time) recordings are padded with zero vectors for the
beginning timesteps to have an equal sized feature matrix between
the examples in a batch. In order to better match the target outputs
being padded at the end, we move the input feature padding also to
the end. In addition, validation SPIDEr score based early stopping
is added to the baseline system. Also, the gradients are reset after
processing each batch (this was initially missing from the baseline
system - hence from baseline results -, but later added to baseline
code repository).

3. EVALUATION

3.1. Dataset

In correspondence with DCASE 2020 challenge task on audio cap-
tioning (task 6), Clotho [17] dataset is used for development and
evaluation. Clotho consists of 15 to 30 seconds long recordings col-
lected from FreeSound platform 4, and each recording is annotated
with five different captions using crowd-sourcing. In this work, de-
velopment split of Clotho is used for training the systems, and the
performance is evaluated using the evaluation split.

3.2. Evaluation Metrics

For the assessment of the performance of our method, we employ
the proposed metrics from the audio captioning task at DCASE
2020 challenge2. These metrics can be divided in two cate-
gories. Firstly there are the machine translation metrics, which are
BLEUn [18], ROUGEL [19], and METEOR [20]. BLEUn calcu-
lates a weighted geometric mean of the precision of n-grams (typ-
ically n ∈ {1, 2, 3, 4}) between predicted and ground truth cap-
tions, ROUGEL calculates an F-measure using the longest common
sub-sequence (also between predicted and ground truth captions),
and METEOR is based on a harmonic mean of the precision and
recall of segments, from the predicted and ground truth captions.
Then, there are the captioning metrics which are the CIDEr [21],
SPICE [22], and the linear combination of these two metrics called
SPIDEr [23]. CIDEr uses a weighted sum of the cosine similar-
ity of n-grams, between the predicted and ground truth captions,
and SPICE measures how well the predicted caption recovered ob-
jects, scenes, and relationships of those, according to the ground
truth caption. SPIDEr is the average of CIDEr and SPICE, and it
evaluates both fluency and semantic properties of the predicted cap-
tions [23].

4https://freesound.org/
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Metric Baseline CWR-CAPS CWR-WL-CAPS

B1 38.9 39.0 40.9
B2 13.6 14.3 15.6
B3 5.5 6.3 7.3
B4 1.5 2.4 3.0
R 26.2 27.0 27.8
M 8.4 8.5 8.8

CIDEr 7.4 8.9 10.7
SPICE 3.3 3.6 4.0
SPIDEr 5.4 6.3 7.4

Table 1: Percentage results for baseline, CWR-CAPS and CWR-
WL-CAPS. BN stands for BLEU, R is for ROUGE, and M is for
METEOR.

3.3. Hyperparameters

The specific hyperparameters used in this work are as follows. The
feature extraction and the model architecture hyperparameters are
kept the same with the baseline method for better comparability.
The number of log mel bands for feature extraction is selected as
64, and Hamming window of 46 ms length with 50% overlap is
used for frame division. the total number of content words is 88.
For the encoder, we use three bidirectional GRU layers with 512
units each. The dropout probability used in the encoder is 0.25.
For the decoder, we use one GRU layer with 512 units. For the
autoencoder classifier training, the batch size is selected as 32 and
the Adam learning rate is selected as 10−4. The maximum number
of training epochs is set to 300, with 100 patience epochs before
aborting.

4. RESULTS AND DISCUSSION

The performance results for CWR-CAPS and CWR-WL-CAPS
with the DCASE 2020 challenge official metrics are given in Ta-
ble 1. CWR-WL-CAPS method offers 37% relative increase on
SPIDEr compared to baseline, and also performs better on other
metrics. Moreover, comparing CWR-CAPS and CWR-WL-CAPS,
there is a considerable benefit for using weighted loss for the cap-
tion outputs. The benefit is more evident in CIDEr metric compared
to SPICE. This is also consistent with the theoretical expectations,
due to TF-IDF weighting in CIDEr calculation (as mentioned in
Section 2.3).

While both methods perform better than the baseline, the pro-
duced captions still mostly lack the structure of a grammatically
valid sentence. Even though the non content word contribution to
the objective loss is decreased significantly, words such as is, are,
and and appear repetitively towards the end of many of the produced
captions. This can be attributed to the fact that both caption and con-
tent word autoencoders aim to map acoustic features to the words,
without e.g. a language-model based prior. Longer-term temporal
modeling of the captions can be improved with a language model,
trained with the given captions and also with external text material,
which would be then used together with the autoencoder acoustic
model, and the outputs would be produced using e.g. beam search
algorithm [24]. We currently consider this approach as the future
work for this task.

5. CONCLUSIONS

In this paper, we propose two methods for automated audio caption-
ing. These methods are based on content word regularization and
weighted objective loss, both using recurrent neural network based
autoencoder. This work is evaluated in the framework of DCASE
2020 challenge task on audio captioning, and both proposed meth-
ods provide a considerable boost over the baseline results of the
challenge. Still, the produced captions mostly lack the correct En-
glish grammatical structure, and addressing this problem using ex-
ternal language models is planned as future work.
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