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Abstract—Automated audio captioning (AAC) is a novel task,
where a method takes as an input an audio sample and outputs a
textual description (i.e. a caption) of its contents. Most AAC meth-
ods are adapted from image captioning or machine translation
fields. In this work, we present a novel AAC method, explicitly
focused on the exploitation of the temporal and time-frequency
patterns in audio. We employ three learnable processes for audio
encoding, two for extracting the local and temporal information,
and one to merge the output of the previous two processes. To
generate the caption, we employ the widely used Transformer
decoder. We assess our method utilizing the freely available splits
of the Clotho dataset. Our results increase previously reported
highest SPIDEr to 17.3, from 16.2.

Index Terms—automated audio captioning, wavetransformer,
wavenet, transformer

I. INTRODUCTION

Automated audio captioning (AAC) is an intermodal trans-
lation task, where the system receives as an input an audio
signal and outputs a textual description of the contents of the
audio signal (i.e. outputs a caption) [1]. AAC is not speech-to-
text, as the caption does not transcribe speech. In a nutshell,
an AAC method learns to identify the high-level, humanly
recognized information in the input audio, and expresses this
information with text. Such information can include complex
spatiotemporal relationships of sources and entities, textures
and sizes, and abstract and high-level concepts (e.g. “several
barnyard animals mooing in a barn while it rains outside”).

There are different published approaches for AAC. Re-
garding input audio encoding, some approaches use recurrent
neural networks (RNNs) [2], [3], [4], others 2D convolutional
neural networks (CNNSs) [5], [6], and some others the Trans-
former [7] model [8]. Though, RNNs are known to have
difficulties on learning temporal information [9], 2D CNNs
model time-frequency but not temporal patterns [10], and
the Transformer was not originally designed for sequences
of thousands time-steps [7]. For generating the captions, the
Transformer decoder [6], [11], [8] or RNNs [1], [3], [5]
are mostly employed, and the alignment of input audio and
output captions is typically implemented with an attention
mechanism [12], [11]. Also, some approaches adopt a multi-
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task approach, where the AAC method is regularized by the
prediction of keywords, based on the input audio [6], [11],
[13].

In this paper we present a novel AAC approach, based on a
learnable representation of audio that is focused on encoding
the information needed for AAC. We adopt existing machine
listening approaches where sound sources and actions are
well captured by time-frequency information [10], [14], and
additionally exploit temporal information in audio using 1D
dilated convolutions that operate on the time dimension [15],
[16], for learning of high-level information (e.g. background
vs foreground, spatiotemporal relationships). Additionally, we
claim that these two types of information can be combined,
providing a well-performing learned audio representation for
AAC. To this end, we present an approach which is explicitly
focusing on the above aspects. We employ three different
encoding processes for the input audio, one regarding tem-
poral information, a second that considers the time-frequency
information, and a third that merges the previous two and its
output is given as an input to a decoder which generates the
output caption.

The contribution of our work is: i) we present the first
method that explicitly focuses on exploiting temporal and local
time-frequency information for AAC, ii) we provide highest
reported results using only the freely available splits of Clotho
dataset and without any data augmentation and/or multi-task
learning, and iii) we show the impact on the performance
of the different components of our method, i.e. the temporal
and local time-frequency information, merging the previous
two, or all of them. The rest of the paper is as follows. In
Section II we present our method. Section III presents the
evaluation process of our method, and the obtained results are
in Section IV. Section V concludes the paper and proposes
future research directions.

II. PROPOSED METHOD

Our method takes as an input a sequence of T, vectors with
F audio features, X € RT*F  and outputs a sequence of Ty
vectors having W one-hot encoded words, Y. To do so, our



method utilizes an encoder-decoder scheme, where the encoder
is based on CNNs and the decoder is based on feed-forward
neural networks (FFNs) and multi-head attention. Our encoder
takes X as an input, exploits temporal and time-frequency
structures in X, and outputs the learned audio representation
Z € RT*F' which is a sequence of T} vectors of F” learned
audio features. The decoder takes as an input Z and outputs
Y. Figure 1 illustrates our proposed method.

A. Encoder

Our encoder, E(-), consists of three learnable processes,
Eiemp(+)s Ei(+), and Eperge(+). Eiemp learns temporal context
and frame-level information in X [16], and is inspired by
WaveNet [15] but with non-causal convolutions, since in AAC
there is no restriction for causality in the encoding of input
audio. Ei learns time-frequency patterns in X, and is inspired
by SOTA methods for sound event detection [10], [14], and
Eerge merges the information extracted by Eienp and Ej.

N, blocks of CNNs (called wave-blocks henceforth) in
Eremp, sequentially process X. Each wave-block consists of
seven 1D CNNs, CNN{* to CNN;*, with n; to be the index
of the wave-block. For example, CNN?3 is the third CNN of
the second wave-block. The kernel size, stride, and dilation
of CNN”;IM’t7 } are one and its padding zero. The kernel size
of CNN {L[lg,tg} is three and its padding, dilation, and stride is
one. The kernel size of CNN’{I;SJG} is three, its padding and
dilation are two, and stride is one. CNNy* has C{"" and Cgy
input and output channels, respectively, and the rest have C_,
input and output channels.

The above hyper-parameters are based on the WaveNet
architecture [15]. The output of the n.-th wave-block, H{™,

is obtained by

™ =CNNG (H ), (1)
S{™ = tanh(CNN{ (H{™)) ® o(CNN{ (H{™)), (2)
H™ =CNNp(S;™) + H;,™, 3)
S{™ = tanh(CNN{ (H{™)) ® o(CNN{" (H[™)), and  (4)
H" —ReLU(BN!" (CNN/"(S/™) + H/™)), (5)

where BN{" is the batch normalization process at the n-
th wave-block, ReLU is the rectified linear unit, o(-) is the
sigmoid non-lin%arity, ® is the Hadamard product, HY = X,
and HtN S Rg‘g:XTa. The output of Eiemp, Zi = Eiemp(Xt),
is obtained by reshaping H™ to {1 x T, x C™}. All CNN™
operate along the time dimension of X, allowing HtN ‘ to learn
temporal information from X; [15] and be used effectively
in WaveTransformer for learning information that requires
temporal context, e.g. spectro-temporal relationships. The time
receptive field of each wave-block spans seven time-steps of
its corresponding input, leading to a receptive field of 7N, —1
time-steps of X, for the output of the N;-th wave-block.

Eys employs Ny blocks of 2D CNNs, called 2DCNN-
blocks henceforth. Each 2DCNN-block consists of a 2D CNN
(S-CNN"), a leaky ReLU (LU), and a 2D CNN (P-CNNj").
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Fig. 1. The WaveTransformer, with the encoder on the left-hand side and the
decoder on the right-hand side

Each 2DCNN-block is followed by a ReLU, a BN (BN™")
process, a max-pooling (MP™") process that operates only on
the feature dimension (hyper-parameters according to [10]),
and a dropout (DR) with probability of p,,. The 2DCNN-
blocks are inspired by AAC and sound event detection and
classification methods, and the recent, successful adoption of
depth-wise separable convolutions [13], [10]. The 2DCNN-
blocks learn spatial time-frequency information from their
input [10], allowing Hév ¢ to be used effectively for the
identification of sources and actions [10].

S-CNN™" consists of C/* different (5, 5) kernels with
unit stride, and padding of 2, focusing on learning time-
frequency patterns from each channel of its input. Each kernel
of S-CNN™ is applied to only one channel of the input to
S-CNN™, according to the depthwise separable convolution
model and to enforce the learning of spatial time-frequency
patters [10]. P-CNN{" consists of a square kernel of size
Kpeny > 1, with unit stride, and padding of 2, focus-
ing on learning cross-channel information from the output
of S-CNN"™, since the kernels of P-CNNy* operate on all
channels of the input to P-CNN;".

While hyper-parameters of S-CNN™ and S-CNN™ are
based on [10], the usage of Kp.cnn > 1 is not according to a
typical point-wise convolution (i.e. with a (1, 1) kernel, unit
stride, and zero padding), as it was experimentally found that
it performs better, using the training and validation data, and
the protocol described in Section 3. S-CNN' has crf =1
and OO = O input and output channels, respectively.
S-CNN™>1 and P-CNN™ have input and output channels

equal to Cgy. The output of the ny-th 2DCNN-block, Hyi' €

Colf x Ty x Fy}

Ry , is obtained by

S/™ —P-CNN™ (BN™(LU(S-CNN"(H"1)))) and  (6)
H{* =DR(MP™ (BN"(S"))), ©)

Ny
where H} = X and thfv f e Rgz;‘“XT“Xl. Then, Zy =
E(Xy) is obtained by reshaping Hz:-’“ to {1 x T, x Cr}.



Eierge consists of a 2D CNN, CNNy, and a feed-forward
neural network (FNN), FNN,,, with shared weights through
time. Specifically, CNN,, has a (5, 5) kernel with unit stride
and dilation, padding of 2, and two input and one output
channels. Both Z, and Z have the same dimensionality, are
concatenated in their channel dimension, and given as an input
to CNNy,, as Z"” = [Z;Zy] and Z' = CNNy(Z"), where

Ny
2x Ty xC ! N,
Z" € RI;™W T and Z' € RY>TxCul g the output of

CNN,,. Z’ is then reshaped to {7} x CN¢} and given as an
input to FNN,,,, as Z = FNN,,(Z’), where Z € RT:*F" | with
F' = Chr.

B. Decoder

We employ the decoder of the Transformer model [7] as our
decoder, D(-). During training D takes as an input Y and Z,
and outputs a sequence of T,, vectors having a probability
distribution over W words, Y & [0, 1]5>W . We follow
the implementation in [7], employing an FFN as embedding
extractor for one-hot encoded words, FNNy (), a positional
encoding process, Puc(+), Naee decoder blocks, D™ (-), and
an FFN at the end which acts as a classifier, FNN(+). FNNemp
and FNNg have their weights shared across the words of
a caption. Each D™ consists of a masked multi-head self-
attention, a layer-normalization (LN) process, another multi-
head attention that attends at Z, followed by another LN, an
FNN, and another LN.

We model each D™ as a function taking two inputs,
Unee ¢ RB>V™ and Z, and having as output H}* €
RTVE™ with HY,, = H)., U = Y, and V0 = W. All
FNNs of each D™ have input-output dimensionality of V.
We use [V, attention heads and for the multi-head attention
layers and pg dropout probability. For the implementation
details, we refer the reader to the paper of Transformer
model [7]. FNN.,, takes as an input Y and its output is
processed by the positional encoding process, as

H:iec = PSHC(FNNemb(Y)))’ ®)

where P, is according to the original paper [7]. HJ.. is
processed serially by the Ng. decoder blocks, as Hy¥ =
D”C‘eC(H:fe"SC*I7 Z), and then we obtain Y as

Y = ENN(H %), )

dec

We optimize jointly the parameters of the encoder and decoder,
by minimizing the cross-entropy loss between Y and Y.

III. EVALUATION

To evaluate our method, we employ the dataset and protocol
defined at the AAC task at the DCASE2020 challenge. The
code and the pre-trained weights of our method are freely
available online!. We also provide an online demo of our
method, with 10 audio files, the corresponding predicted
captions, and the corresponding ground truth captions?.

Thttps://github.com/haantran96/wavetransformer
Zhttps://haantran96.github.io/wavetransformer-web-demo/

A. Dataset and pre- and post-processing

We employ the freely available and well curated AAC
dataset, Clotho, consisting of around 5000 audio samples
of CD quality, 15 to 30 seconds long, and each sample is
annotated by human annotators with five captions of eight
to 20 words, amounting to around 25 000 captions [4], [17].
Clotho is divided in three splits: i) development, with 14465
captions, ii) evaluation, with 5225, and iii) testing with 5215
captions. We employ development and evaluation splits which
are publicly and freely available. We extract ' = 64 log mel-
band energies using Hamming window of 46ms with 50%
overlap from the audio files, resulting to 1292 < T, < 2584,
for audio samples whose length is between 15 and 30 seconds.

We process each caption and we prepend and append
the <sos> (start-of-sentence) and <eos> (end-of-sentence)
tokens, respectively. Additionally, we process the development
split and we randomly select and reserve 100 audio samples
and their captions in order to be used as a validation split
during training. These 100 samples are selected according to
the criterion that their captions do not contain a word that
appears in the captions of less than 10 audio samples. We
term the resulting training (i.e. development minus the 100
audio samples) and validation splits as Devy, and Devy,,
respectively. We also provide the file names from Clotho
development split used in Dev,,, at the online repository of
WaveTransformer®. We post-process the output of WaveTrans-
former during inference, employing both greedy and beam
search decoding. Greedy decoding stops when <eos> token
or when 22 words are generated.

B. Hyper-parameters, training, and evaluation

We employ the Devy, (as training split) and Devy, (as val-
idation split) to optimize the hyper-parameters of our method,
using an early stopping policy with a patience of 10 epochs.
We employ Adam optimizer [18], a batch size of 12, and
clipping of the 2-norm of the gradients to the value of 1.
The employed hyper-parameters of our method are N; = 4,
Ny¢ = 3, O(Z;t =V, = 128, Ft/f =1, Ngec = 3, Nyt = 4,
Dny = Pa = 0.25, and beam size of 2. This leads to the
modelling of 7N; — 1 = 27 frames, equivalent to 0.7 seconds
for current X, for Eiemp.

To assess the performance of WaveTransformer (WT) and
the impact of Eiemp, Eif, Fmerge, and beam search, we employ
the WT, WT without Ey and Eperge (WTiemp), Without Eierp
and Eperge (WTyp), and without Eperge (WTaye), where we
replace Energe With an average between Eienp, and Eyp. We
evaluate the performance of WT with greedy decoding and
with beam searching (indicated as WT-B) on Clotho evaluation
split and using the machine translation metrics BLEU; to
BLEU, scores, METEOR, and ROUGE_, [19], [20], [21], and
the captioning metrics CIDEr, SPICE, and SPIDEr [22], [23],
[24]. In a nutshell, BLEU,, measures a weighted geometric
mean of modified precision of n-grams, METEOR measures
a harmonic mean of recall and precision for segments between
the two captions, and ROUGE calculates an F-measure
using the longest common sub-sequence. On the other hand,



RESULTS ON CLOTHO EVALUATION DATASET. B;, STANDS FOR BLEU,,. BOLDFACE FONTS INDICATE THE BEST VALUES FOR EACH METRIC

TABLE I

Model B, B, B3 By METEOR ROUGE; CIDEr SPICE SPIDEr
TRACKE (w/o MT) [6] 502 299 183 10.2 14.1 33.7 23.3 09.1 16.2
NTT (w/o MT, DA, and PP) [11] 521 294 174 103 13.8 335 232 08.5 15.8
NTT (MT+PP, w/o DA) [11] 520 312 200 127 14.0 337 26.1 08.2 17.2
WTiemp 458 259 154 088 139 32.0 19.8 08.7 14.2
WTy 479 280 171 102 14.7 33.1 24.7 09.3 17.0
WTavg 479 281 171 103 14.8 33.0 24.7 09.4 17.0
WT 484 282 174 102 14.8 332 24.7 09.9 17.3
WT-B 49.8 303 197 120 14.3 332 26.8 09.5 18.2

CIDEr calculates a weighted cosine similarity of n-grams,
using term-frequency inverse-document-frequency weighting,
SPICE measures how well the predicted caption recovers
objects, attributes, and their relationships, and SPIDEr is the
average of CIDEr and SPICE, exploiting the advantages of
CIDEr and SPICE.

Additionally, we compare our method with the two highest-
performing AAC methods, NTT [11] and TRACKE [6], devel-
oped and evaluated using only Clotho development and eval-
uation splits. NTT uses different components, like multi-task
learning (MT), data augmentation (DA), and post-processing
(PP), but authors provide results without these components.
TRACKE is the current SOTA, it also uses MT but the authors
provide results without MT. We compare our WT against
TRACKE without MT and NTT without (w/o) DA.

IV. RESULTS

Table I presents the results of WT, NTT, and TRACKE. It
must be noted that both the systems presented at the papers of
the NTT and TRACKE methods, employ data augmentation
(DA) and/or multi-task learning (MT) schemes, achieving
higher SPIDEr. Since WT is not employing MT and DA, in
Table I we compare to the version of NTT and TRACKE
methods that have similar set-ups as the WT. As can be seen,
the learning of time-frequency information (WTy) can lead
to better results than learning temporal information (WTiemp)
instead. We hypothesize that this is because the decoder can
learn an efficient language model, filling the connecting gaps
(e.g. interactions of objects) between sound events learned
from FE. However, from the results it can be seen that
employing both FE.n,, and Ejs increases more the performance
of the WaveTransformer (WT).

Comparing the different scores for the employed metrics
and for the WT and WT cases, shows that the utilization
of Eiemp is not contributing much in the ordering of words,
as indicated by the difference of BLEU metrics between
WTy and WT. We can see that with the Eiepp, our method
learns better attributes of objects and their relationships, as
indicated by CIDEr and SPICE scores. Thus, we argue that
Eiemp contributes in learning attributes and interactions of
objects, while Ei contributes information about objects and
actions (e.g. sound events). Also, by observing the results for
WT,,., we can see that a simple averaging of the learned
information by FEenp, and Ly leads to a better description
of objects, attributes, and their relationships (indicated by

SPICE). Though, as can be seen by comparing WT,,, and
WT, the Eyerqe manages to successfully merge the information
by Eiemp and Ey. The utilization of beam search (WT-B)
gives a significant boost to the performance, reaching up to
18.2 SPIDEr. Compared to TRACKE and NTT methods, we
can see that when excluding DA, MT, and PP, our method
(WT) performs better. Additionally, WT-B performs better
than NTT with MT and PP. Our post-processing consists only
on using beam search, where the NTT method involves a
second post-processing technique by augmenting the input
data and averaging the predictions. Thus, WT surpasses the
other methods that is compared against.

Finally, two, high SPIDEr-scoring, captions are for the
files Flipping pages.wav, and 110422 _village_dusk.wav of the
evaluation split of Clotho. Our predicted captions for each of
these files, using WT-B, are: “a person is flipping through the
pages of a book™ and “a dog is barking while birds are chirping
in the background”, respectively, and the best matching ground
truth captions are “a person is flipping through pages in a
notebook” and “a dog is barking in the background while some
children are talking and birds are chirping”, respectively.

V. CONCLUSION

In this paper we presented a novel architecture for AAC,
based on convolutional and feed-forward neural networks,
called WaveTransformer (WT). WT focuses on learning long
temporal and time-frequency information from audio, and
expressing it with text using the decoder of the Transformer
model. We evaluated WT using the dataset and the metrics
adopted in the AAC DCASE Challenge, and we compared
our method against previous SOTA methods and the DCASE
AAC baseline. The obtained results show that learning time-
frequency information, combined with a good language model,
can lead to good AAC performance, but incorporating long
temporal information can boost the obtained scores.
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